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NOTATION

1. Unit means service unit or counter at which the server
is serving.

2, L.S.T. is abbreviated for Laplace-Steiltjes Transform.
3. H(x) is the distribution functiun of service times.

Its L.S.T. is denoted by h(s) and its first three
moments by o, B and Y respectively.

4, vl(s) denotes the L.S.T. of the distribution of
blisy period of an M|G|L queue with service time
distribution Hl(x).

5, Y(s) denotes the L.S.T. of the distribution of busgy
period of the whole system {All the service units
considered together).

6. The convolution of two distribution functions F(x)
_ and G(x), 0 <x <o, is denoted by:

F*G(x) = Ix F(x~-u) da(u)
)
The m-~fold convolution of F is dencted by:

P () = pp(B1) ey
7. U(x) is the unit distribution:

. U(x) Cifx <0
' lif

X > D

o

613 is the Kronecker delta defined by:

6ij

= 01if 1 #§
=1if i = J




9.

For referring the equations we use the following
convention: (n) means the n-th equation of the

present chapter and (m-n) means the n-th equation
of the m~th chapter.




CHAPTER I
A SINGLE SERVER TANDFM QUEUE WITH
NON-ZERO SWITCHING IN UNIT 1

l. Concepts and Definitions

In this chapter we consider a queueing process with two
gervice units, unit 1 and unit 2, and & single server. The
server attends to the two units alternately according to sone
switiching rule. A switching rule [Neuts and Yadin, 1968] is a

rule describing how the server changes from one unit to ths
other. The server may change from one unit toc the other either
by a non-zerc switching rule or by a gzerc switching rule. By
a non-zero switching rule the server continues to serve ina
uni.t until some upper number of contecutive services have been
capleted and then he switches tc the other unit. By a szero
switching rule the server stays in a unit until the queue in

it becomes empty and then he switches to the other unit.

In this chapter we discuss a non-zero switching rule for
unit 1 and gero switching rule for unit 2. The sero switching
rule for unit 1 is dealt in the next chapter.

We say that two units are in tandem ~hea the rutput of the

first unit is the input to tne second. It is arsumed that




customers arrive in unit 1 in accordance with a Poisson process

of density A\. The input for unit 2 is those who have completed
service in unit 1.
The durations of the successive service times in units 1
- and 2 are identically distributed independent positive random
variables with distridution functions H, () and H,(")

respectively. Further the service times are independent of the

arrival times.
In the case of non-zero switching the server starts in
unit 1 at time t = O and continues to serve in it until he has
given k services without interruption or until the queue be-
comes empty, whichever. comes Mirst. k is a positive integer which

we will csll . as the switching parsmeter. The %ime interval

- cpent without interruption in unit 1 is called a l-task.

S8imilarly we define a 2-task. A l-task followed by a 2-task

both togethar will he called as a cycle cf tasks.

A e

The customers who have -ompleted service in unit 1 queue
up in front of unit 2. The sexver after completing the 1-

task switches to unit 2 and scrves there until the qQueue in it

[

becomes empty. After finiaking the task in unit 2 the server

switches back to unit ' and -cntinues the process.

: % When k=1, we obtain siu;i an M/G/l queue with service

time distribution Hl * Hz('}
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2. Distribution of Busy Period

The server bezins in unit 1 at t=0 and serves vetween the

‘ two units alternately according to some switching rule. The
- time required for both the units to become empty simultaneously
for the first time is called a busy period of the system.

Suppose that there is a Poisson input of density \ in
unit 1 and that the service time distributions of the two units
are Hl(-) and Ha(-). Then since the distribution of busy
pericd does not depend upon the order in which the customers
are served [Welch (19€5)], the diastribution of busy period of
the model defined above is equivalent to the distribution of

busy perind of an M/G/l queue with input rate A and service

time distribution the conv-lution H, * Hz('). Hence from the
- - classical results of an M/G/1 queue [Takacs 1962, p. 47] that
| if y(s) is the Laplace Stieltjes Transform (L.S.T.) of the
distribution of busy period then y(s) is the unique root

in the unit disk |z| <1 of the equation

(1) z = hl(s + A - \g) hz(s + A = 2\2),

The expected length of busy period is given by:

(2) (0+) Ml 0
2 - y'(o+) = 3 if 1=\ -\a, >0,
1-Xa1-XQz % 2

, nw 1f1'l.al‘xaz.ol
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3. The Basic Imbedded Semi-Markov Process

and its Transition Probabilities

Macroscopically the queueing process consists of busy
periods alternating with idle periods. Each busy period
congists of a random number of alternating l-tasks and
2-tasks. Every busy pericd can be decomposed into a random
number of cycles of tasks.

Here we assume that at t=0 there are i > O customers
in unit 1 and none in unit 2. In the case i=0 the process
starts with an idle period.

Let us define the sequence of random variables To, Tl’
TZ"""’ where To = 0 and Tn i3 the duration of the nth cycle
of tasks, n=1,2,.... Let by denote the number of customers
in the system at the end of the nth cycle, n=1,<,.... and
& = i.

It follows from the regenerative properties of the input

and service processes that the bivariate sequence of random

variables
(3) {8 Tp» n 29}
is a Semi-Markov sequence with state space {0,1,2,.....].

We recall the definition of Semi-Markov sequence.
Consider a doublie sequence of random variables

{(Jn.xn), n-O,l,Z,...} defined on a complete probability

space and such that:

L e R L . e i ———— 2
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P

p[xo =0} = 1,

(14) P{Jo':k}\, wheres, >0, L &, =1, and I is the state

\ kel space
(111) P{Jn=k, X, £x | JD,Jl,...,Jn_l,xl,xz,...,Xn_l}

=P ok, X <x | g ) =q; (x),
n-1
for n=1,2......
then the process [(Jn,xn), n > 0} is called a Semi-Markov

sequence. The functions Qij(x), 1,j=1,2,.... are mass functions

vwhich are non-decreasing and they satisfy:

Q 4(x)
Qij(m) ij)

where (Pij) is the tramsition matrix ¢f the Markov chain

i

0 for x <O,

#

P i,j=1 2 ...
[Jn’ n > 0}, For rurther details of Semi-Markcv sequences
we raefer to Pyke (1961), Neuts (19G€).

To study the transition probabilities of the Semi-Markov

sequence we first define an auxiliary probabii’ty function
(n),
GiJ \X).
Let us define:
) 6{D(x) = 8, Ux)
’ i i3 ’

where & is the Kronecker delta and U( ) is the distribution
degenerate ut zero. For n >1, Ggg)(x) is the probability
that, in an M|G |l Queue of input ratc A and service time
distridbution Hl(-) the initial busy period involves at

least n services, that the n-th gzervice is completed before

© e e e s 1 ht < 3% o iy | i =




time x and that at the end of the n-th service there are j

customers walting, given that there were i customers initially.

Then for 1 > 1:

(L)oy - ay Oy)d-itt
- (Sb) Gij (X) - I: e j-il d dﬂl(y) H]
* J-v+l |
g (5¢) Ggg 1) (x) = vfa Jo G(n (x~y)e” Ny %%x%FTTT aH, (¥) '
i !

: Let g(

n), (n) i
: ij (s) ve the L.S.T. of Gy 5 (x) and:

(6) 8" (s,2) -

ggl)(s)zJ » Izl <1, n>0,

i
0
OM ]

J
Then:

s§°)(s,z) 2t

M & Me2) = T nenna)

N A=Az}
P,y - T Ry g ,0)], o,

where hl(') is the L.S.T. of Hl(-).

Successive substitution yields:




From the derinition of G§§)(x) it follows that:

0 for i > n,

(9) g§“’(s,o>

Hence from (8):

i-n . h
gt h hl(sﬂ—xz) fori >n >0,

L]

)  &™s,2)
A Summary of Known Results

The properties of the probability functions G§?)(x),
already known, may be summarized as follows: For proofs
of these we refer to Takacs (1960), Neuts (1968b)
Lemma 1.1

If Gl(x) is the distribution of busy periods for an
M{G |l queue with input rate A and service time distrihbution
H () and v,(s) its L.S.T., then:

© (n

1
(11) nfl B, (8) = vi(s) , 121,
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Lemma 1.2
©

If Y.L(s,w) = I g{n)(s,O) & o} <1,
) n=1

then:
s o(n) i
(12) Z g (s,0) o' = vy(s0), 121,
n=
For v =1, vl(s,l) = yl(s) and then lemma .2 reduces
to lemma 1.1.

Lemma 1.3

If |z] <1, lo} <1 and 5 >1 then:

i i
:’ bt (n) ion_ 2z -Yl(s’w)]
(13) n:O j__z_lgi.j (s)2° o = z-oh (8+\-Az) ’

For v = 1 one may rewrite (13) as:

i i
ey el
g 5O s T

Lemma 1,4
If R(s) > 0 and {v| <1 then z = Yl(s,w) is a root of

Takace’ functional equation:

(15) z = whl(aﬂ-xz) , lz | <1,

Further z = yl(s,u) is the only root of this equation in the
unit circle |z| <1 if R(s) > 0 and |c| <1 or R(s) > 0 and

jol <1 or R(s) >0, || <1l and1 - Ao <O,




Lemma 1.

In lemma 1.4 taling « = 1 we get that for R(s) > C,

z = yl(s) is a root of the equation:

(16) z

Further 6 =

equation:

(17) 8

= hl(s+x-xz) s

yl(O) is the smallest positive real root of the

= hl(k - 26) ,

and if 1-A Ql <0then 8 <1 and if 1 - )\ a1 > O then 0=1.

From lemmas 1.4 and 1.5 it follows that:

s /

‘ _ 1
(18) v,0+) = 1 o ifl-2a >0,
= o ifl-ig =0,
(19) "*(0+) 2 ir 1 0
Yy 0+) = - A >0,

It YIGJ,Q) = f(w) then

1

(20) £'(1) s =2 ifl-1e >0,

1l-) Y

=z ® ifl'xal'o’
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2 10
2\ A8
(@) ') = iy

(1-2 a152 (1-2 o )3

if 1-A o > 0,

Now we define the transit.on probabilities of the Semi-

Markov sequence {gn, T, 02 0} defined in (3) as:

(22) O (x) =plg =3, 7 <x|g, =1]

Fer 1 >0and j >0,

(23)
J J-v
- (kY y ~A(v-u) [A(v-u (k) ¢y
Q4 (x) vfoj:f;d(}iv (u)e 5T 4, Hy(veu)
(w)(v)

k-1 e ST R
VT e Rl o i),

(2){v)

where H(n)(-) is the n-fold convolution of H(*). The second
term on the right hand side of the above expression vanishes
for i > k.

Ir qij(s) is the L.S.T. of Qij(x) and

(24) q,(5,2) = T q,,(s) 2, l2' <1,
i jo0 1

then:

(25)

J o J-
i+ & o o G
V= )

+ z g( )(s) ro (s+1)x Qﬂ). d H T)(x)
Lo}

H
r=i lo

for 1 >0 and §J >0,

PR YT

A e e
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(26a)

qi(5=2) = ggk)(s z)h (s+r-2z) + 2 g(r)(s,o)h;(sﬂ-xz),
‘ r=i 4

for 1 <k,

(26v) = g§k)(s,z) h;(s+x-kz), for 1 >k ,

From (9) and (2€) it follows that:

[

(@) as,0) = T g(s,0l(en) i 1 <K,

r=i

0 ifri>k,

Next we introduce the taboo probabilitiesaa‘n)(x)

defined by:
(28)

oQ_l?)(x) = P{?0+T1+'°'+Tn'5 X,§n=3z§vfo for v=1,...,n-1
| g, - i} , n>1,
(0) - e
oYy (x) = By vix)

That is, OQ§3)(x) is the probabilily that a busy period has

at least n cycles of tasks, that the n-th cycle ends not later

than x and when it does j customers are walting, given that &

custczers were in unit 1 at t=0,

From the definition it follows that:

(@) @qJ =0




AR o s
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and
(n#l), \ _ I3 r‘ (n)
OQiJ (X) = §1 o OQi\) (x'u) d ij(ﬂ), n .>. 1 ’

Since each cycle of tasks can have atwost X services in units
1l and 2, in the above formula y can be atmost j+k.

Let oqgg)(s) be the L.S.T. of oQig)(') and:

) x 0= 1 2,

n=0 oqi,j

N €Y
(300)  myy(e) = E oy (8)
(B12)  gryfone) = E gryyle) 2,
(w)  m(s,2) = EO i) 20, 2l g1, R(s) >0,

or |z} <1, R(s) >0,
z 3

() aiM(s,2) - =z A2 2,
Then:

%
1
:
3




(33) o<1§‘J?)(s) =8,

k

Jj+
oqgg)(s) = 21 oqgﬁ'l)(s) (s}, n21,
v=
(31‘.) OQ§O)(S,Z) = zi ’

: oqg.n)(s,z) = ;1 oqgr\:—l)(s) qv(s’z) , n>l,
V=
omi(B,Z) = qi(312) + 21 omiv(l) qv(s,z) ’
V=

o

(n)
s =
Note that A Ao (s) omi(s,O) is the L.S.T. of the

distribution of busy period of an M|G|l queue with a Poisson
input of rate A\ and service time distribution Hl * Hz(').

That is:
(35)  m(8,0) = y'(s) , 131,

More properties of the taboo probabilities oQig)(-) are studied

in the zero switching case.

4, The Joint Distribution of Queue length

and Virtual Waiting time

Virtual Waiting time:

The virtual waicting time at time t is defined as the
length of time a (virtual) customer arriving at t has to wait

before beginning service in unit 1. For the non-gzero switching

case the virtual waiting time at time t will be denoted by




e~

il

1k

ﬂék)(t), where k is the switching parameter defined earlier.

s sa ARG

The number of individuals in the system at time t still
requiring some service in unit 1 is defined as the queue length
at time t. For the non-zero switching case this quantity will
be denoted by g(k)(t).

Let eij(t,x) be the joint distribution of the queue length
E(k)(t) aud virtual waiting time Ték)(t), given that at t=0

there are i > 1 customers. That is:
(36) o0 = p{s) = 5, ) <x 1 o) = 1},

Further let for i > 1,

(37)
o (6) = 2{s™ ()=, 0 <1ie) <, [ )p0
for all 1 € (0,t] | §(k)(0) = i} s

Formula (36) can be written in terms of (37) as:

(38)
t

65(tx) = &;(t,%) ¢ jo & (6 - u, x) 4 K (u)

+ 258 (e)ay, 1 (e)0 | s M0) = 1) utx)




where Ml(') is the renewal function of the general renewal

process formed by the beginnings of busy periods,
O for x <0

U(x) = {

1l for x>0

To obtain the equation (38), consider the event on the right
hand side of (3€) which can be split into three mutually
exclusive events:

(1) The time t falls in the initial busy perisd,

§(k)(t) =jand 0 < ﬂgk)(t)_s X, given that g(k)(o) = 1.

(i1) The time t does not fall in the initial busy period but
in some other busy period which started at time u (0 <u <t)
with a single customer, é(k)(t) =Jjand 0 < ‘ng_k)(t) <x,

(k)

given that & )= i,

(1ii) The server is idle at time t (that is ﬂgk)(t) = 0),
given that g(k)(o) = i,

The probabilities of these three events give respectively
the three terms on the right hand side of (38).

For i >1, let gij(t,x) be the probsbility that at t
the original cycle of task has not yet ended and that
s)e) = 3, 0 <12 <x ana M) (2)fo ror a1l 've(0,1],
givs.. that at t=0 the service started in unit 1 with i

customers. Then:

® @ t
() ez ozl 1,80 ) 1 (6u0)
(u)
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This formula is obtained from the ract that at time t the

server is serving in the (n+l)th cycle (n=0,1,....) of the

initial busy period. The n-th cycle ended between v and

urdu (0 <u <t) leaving v(=1,2,...) customers in the system.
We define the following transforms for R(s) > O,

R(s) >0 and |z| <1:

* -8X R
oy, (ts) = fo e a0,(t,5)

we, (7 g o#
913(5,-) = jo e Gij(t,s) a%,

-] For .
0,(4,8,2) = T o, (g8) 2,

3=0

* -8X
Qij(t,s) = Io e d Qij(t,x) ,
*¥ S R
Qij(E,a) = yo e oij(t,s) at ,

(-]
Qi(é,s,z) = T a(s8)z)
j=0

sz(t,s) = fm e 8% g4 wij(t,X) )

o}

A% -Et ¥
(c,8) = e vy (t,8) dt,
" Y: 13

o e ‘ J
¥i(s,8.2) = jEO byy(58) 27,

m (4) = |

0

e g N (),

e e i i MO
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Lemma 1.6

ol an,

For R(s) > 0, R(£) >0 and |z} « 1, the transfornm
vi(g,s,z) is given by:
(40)
k 1l

JEUDA LN PO AROES SEREENG NG}

c ( ahl(s)~h1(5+x-kuhzhl(a)h2(s))] ].
. vh[hg(s)-l z[hl(s)-hl(§+X-thzh1(s)h2(an][u zhl(s)hz(s)]
- [2hy(8)-hy (A-hey 2k, (8)h,(8)) 1 q, (8,0 2h) (8)h,(s))

¢ (2-1)hy (sh-rezh (3)b,(s) s(e)al? (5, b, ()0 (8))

k-1

¢ T [B(1-chy (8)+(S21)h, (sh-ezh (a)ny(8)) B2(0)EY (1,00 ] »
vel
where I EERERRL W 2 o the k-th roots of unity.
Proof:

The probability ﬁij(t,x) is given in terms of the
probatilities G;:)(u) by:

o m m om Rm PO e —— e A i = -

.
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(41)
J ot atex bex . J-v
= k =a(t- alt-
*id(t’x) B 20.[ St Iv dGi(.v)(u) € Me-u) t.j‘:v T

(W) ()

()
: dvugk)(v-u)dvl(ﬂ§j)*uz LIS (v,-v)

k-1 .t

+ £ I Xt+xxt*x dgﬁ;)(u) e'l(t'u) P‘gt"u)}j

r=i "¢ t v 3

(W)() (v)

Tt o T R T

der
L=k
| ) dvﬂg)(v'u)dvl(ﬂij)*ﬂz( K] ))<V1'V)

k-1 § b

t+x b+x . R Y
+ 5 5 x x x dG§r)(u) e~)\(t—.1) ])\it-ugj
r=0 v=1 Yo ‘t ‘v v J-v)

| (u)(v) (v,)

. ([LE7%)
. dvﬂl(v-u)dv ( (J'l)*}{z k

) (7y=v) »
1 )

where [ % ] is the greatest integer not exceeding % .

PR TR R e R Y

is performing a 2-task at t and that the previous l-task ' J

conaisted of k services. Tue cycle of tasks in which the

server ia serving at t started with i customers in unit 1
at t=0. The l-task ends after k services leaving v
customers in unit 1 at time u. The number of arrivals

between times u and ¢t 18 j-v so that at t there are j




customers in unit 1, The services of the j customers start

after the completion of the 2-task in progress at t. Let
this 2-task end at time v. If j is a multiple of k, say mk,
vhere m is a positive integer, then the (virtual) customer
eneters service after the service completion of j customers
in both the units. That is, after the completion of m cycles
of tasks, each cycle consisting of k services in each unit.
If j is not a multiple of k, say mk+r (O < Tr < k), then the
(virtual) customer enters service after the completion of m
cycles of tesks together with a further service completion
of r customers in unit 1, Let this service completion occur
at time vl' Now we integrate and sum over all choices of

Vs U, ¥, V.
The second term is obtained by assuming again that the

server is performing a 2-task at t and that the previous

1-task consisted of only r ( < k) services, leaving the

unit 1 empty at the end of the l-task at time u.

The last term is obtained by assuming that the server
is performing a 1-task at t. The cycle of tasks current at
t started with i customers in unit 1 at t=0 and r (< k -1)
service completions are made before t. The last service
completion before t occurs at time u at which there are v
customers waiting in unit 1. The number of arrivals between

times u and t is j-v. Now there are j-1 customers, excepting

the customer in service, at t in unit 1. Let the customer




e aa—, o+ e ST U g EAE TN LSS QY S 4= 1

vwho is in service at t complete his service at time v and

let the service completion of the j-1 customers occur in

unit 1 at time vy Finally we sum over all chcices of r,

v, U, V, vy

Taking the transform of (41) results in:

(42)

[.i]k © + J
'13(§’B> N z 8(k)(§>hi(s)h2k (S)E e-va -(e+r-8)t L%%lGTB dt

(o} o

°d Hgk)(v)

[J]k o \'s L. h)
+ 2 8( )( )h (S)h (S){ ~ BV “e'(S‘FK-S)t L%%—-dt

r=i "o o]
- d ng)(v)
k-1 R @ 5
(r), y,d-1 [ o8Vl - (sa-s)t (0t it
- \Eg (md™Hem, 7 )Ioe Io 1(-3—)3)7

- d B (V)




Hence:

(43)

v"}i(SsS,Z) = g§k)( )[zhl(s)] [ -BVI e'(‘a"‘l's)t

v=0 (o]

o [ 3-v rd
[kzhl(s)t] [ ]% )dth(k)(v)

PN Cp
) R'I iz)(S)I -vaO o (EA-8)t z Efff&é;zf}i
. hgﬁjk(s) at d ng)(v)
2 ol
; f““(ff;?” ST

J=V

Taking the summations inside the integrals is justified
by Lebesgue Dominated Convergence Theorem. In (43) to sum

the series inside the integrals we use the theorem in Appendix

A, by taking y = hz(s) # 1 for R(s) > 0. Then:
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-1
"-;i(*s',s,z) = £ 2 [hz (s) [uh (s)~11[E+r-s- -\w zh (s)h (s)]}

JECCRE L GICEN OO

- [nk(s)-(GA-Aazhy (s)h,(s))]
k-1
+ E: s£°)(§)[h2\8)-h2(§+x -Myzhy (s)h (s))]

v Tz eI (E) e, (8)ny(s) Mloghy(a) T

-1
=% }3 [hk_ [uh (8)-1](E+\-s- -\ zh (s)h (s) 1
o [05(s)-17 {8l (50,20, (s)h,(s))

[h5(s)-hy( Eh-ha 2h, (8)h,(s)) ]

k-1

L RCOIEORACSEE OO

k-1
T ey T 876y (a)mye))-6 (5,00

r=0

© [a-hy (ea-hw zn, (s)n(a))] 0y ()3} |,
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Formuls (26) gives:

65 (5, u,zn, (8)n,(8)I0E( Gorray b ()0, (5) )

k-1
¢ T gl (g, oML (emehe 2h (3)hy(s))
r=i

(hS) = qi(g’mehl(s)hZ(s)) ’

Again, using (8b) we have:

(e4h-heyzh (8)h,(8))T
g (5,02, (), ()67 (5,0) = [ —F (:)ﬁzzs)z -]
n

AERENOEROY

r-v

r hy (rer-2c zhl(s)h \s\):l (v)( o)
l ’

i \,;1[ ¢ 28 (8)B,(5)

Using this, the last term in (44) becomes after simplification:

(46)
k-1 . r -
r20 l-wmhz(s)] [g§r)(§,mmzhl<s>h2(s))-gﬁ’)< £,0) |

: [l-hl(5+x-kuh;hl(s)h2(s)) | hl(s)]

zi by (s)-h) (E-Ae, zh, ()b, (s)) ]
“n (s)-h (m AC) zhl(s)h Ce.)y {[b zh (B)ha(s)]

k-1
< Langlo) e (1,0)-6{ (4 (adm(enfe))

R
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Substituting (45) and (4€) in (44) and simplifying we prove

the lemma.
Lemme 1.
For R(s) > v, R(§) > 0 and |z} <1 the transform
Di(§,s,z) is given by

©

T (“)(E)v (€,8,2)

n=0 v=1

(1]

(47) Qi(gss:z)

x

X, (g)V (gxs z)

o'iv
v=1 1

il

where vi(g,s,z) for 1 > 1 is given in lemma 1.6, and
riv(-) is defined in (30).

Proof:

Unon taking transform in (39) we obtain:

% .
2,4(68) = nfs v:i qi(n)(F) ij(i,s)
= 10(8) ¥y (S s)
v=l

Multiplying both sides by 23 and summing with respect to j we
get (47).
Theorem 1.1

For R(s) >0, R(t) >0 and |z| <1 the transform
ei(g,s.z) of the joint distribution eij(t,x) of queue length
and virtual waiting time at time t for the tandem queue with

non-zero switching rule is gi-en by:




(48)

i
Gi(g,s,z) = Qi(E’s’z) + Eﬁ%&y [1"’1 Ql(g,B,Z)] ’

where Qi(ﬁ,s,z) for 1 > 1 is given by lemma 1.7.

Proof:

The transform of (38) yields:

(1) 673(6,8) = 233(&,8) +my(5))](5,8)

+ 84 Xme'gt P{n§k)(t)=o|§(k)(o)-i}'dt ,

The Kronecker delta in the last term is due to the fact

that:

p{e)(6)=3,2{%) (6)=05(0)=1}

0 if j£0,

P{a®)(6)=0 | g(0)ut} 1¢ 3o0 ,

If M(-) is the renewal function of the general renewal process
formed by the ends of busy periods and m/%) its L.S.T.,

then:

(50) jme'gt P{nék)(t)=o i §(k)(0)=i} at
(@]
- I:e'et I: RO
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| vwhere u is the end point of the last busy period before time
t and no customer arrives between u and t.

Since the input is Poisson, between two successive busy
periods there is a negative exponential idle period. Consider
the renewal process formed by the end points of busy periods
and let Fl(-) be the distribution function of the initial

renewal and F(-) be the common distribution function of other

E renewals. Then:

Fl(x)=G(i)(x), which is the i-fold convolution of G(-)

P(x) = r (-2 4 6(u)
[o}

where G{.) is the distribution function of busy periods.
Hence the renewal function M(t), which is the expected
number of renewals in [O,t], is given by:
©
M) = (7 ¢ 5RO

n=0
Teking L.S.T. we get:

n(E)

U

£,(8) I £(%)
n=0

£,(8)

. R(E) >0,
1-f(€)

where fl(g) and £(€) are the L.S.T. of Fl(') and F(-)

respectively, which are given by fl(g) = yi(g) and

A V(e
(s) = A7)




i,.
m(E) = e

1- ;%g v(§)

Substitution of this in (50) yields that:

(51) J:e'gt p{nik)(t)=o | g(k)(o)=i} at

_ﬁss%_y
= EA-AY(E) ?

Also,

(52)  m8) = gy m(e)

Y
i §+x-xY555, ’

The relation (52) between the L.S.T. of Ml(t) and M(t)

holds because of the fact that the beginnings of busy periods
are obtained by adding negative exponential idle periods to
the end points of busy periods.

Substitution of (51) and (52) in (49) gives:

i,. i,
L W A Y ‘E! L2 Y SSE
eiJ(g)s) = Qij(gis) + g"‘X'XY ; ql'j(gis) + 5OJ g"'l'kY t

Multiplying both sides by z) and summing with respect to j

we get the theorem,




5. Distribution of Virtual Waiting time

The stochastic behavior of the process
{ﬂ&k)(t), 0 <t <=} is a8 follows: n§k)(o) is the initial
occupation time of the server. If ﬂgk)(o+) = 0, then the
server is idle at time t = O+ and until the arrival of a
customer who initiates a busy period.

Consider the arrival times tl, t2""' within a busy
pericd which started at t = O with 1 » O customers in wut 1,
tn is the n-th arrival point of the busy period. Let
i=mk+r (0<r <k, mis a positive integer) and ng) de

the service time of the n-th custcomer in unit v, v=1,2.

Then at tn the arriving customer has & service time

(L)

i+n in unit 1. Hence at tn + 0 the virtual customer has

to wait a further Xgil units of time more to enter service
in unit 1, provided i+n is not a multiple of k. That is, if
i+n is not a multiple of k then at t ﬂ§k)(t) has a jump of
magnitude Xiig. On the other hand if i+n is a multiple of k
then the virtual customer has to wait until the completion
of that cycle and hence at t_ ﬂgk)\t) has a jump of

magnitude:

(1) . (2) (2) V (2)
Xi+n ! xi+n-k+1 ¥ xi+n-k+2 Peee ® x1+n

This is shown in Figure 1.
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Graph of the Stochastic Behavior of the Process {ﬂgk)(t),Q5;<P}
For i > 1, let W, (t,x) = P{n§k)(t)5x\§(k)(0)=i} be the

distritution functicn of virtual waiting time n(k)(t), given

that at t=0 there were i customers. lw:(t,s) is the L.S.T.

of 1wi(t,x) and:
*% _ -t * 4
(53) ¥y (5,8) = j: e W (t,8) dt

Theorem 1.2
e
For R(s) > O and R(E) > O, the transform W (g,8) of
the distribution function 1wi(t,x) of the virtual waiting

time ngk)(t) is given by:




v IR 8. A N
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i .
()  H(5,8) 5 (68) + ey [1 1077880

i»1,
¥
where | A (r,8) is given by:
(55)

k- . ==l
LA (E8) = %m:z:lh:'l(s)[%hz(S)-l][M-s-xwmhl(s)hz(s)]

[ hte)-11 {to, (siny(0) 7' - vi(®)

k-1 k-1
- (v)
’ =1 oTy3(8) \,EJ (1'“‘:\;)“\2’(5)83\’ (”’O)} ]

Proof:

From Theorem 1.1 the transform of the joint distribution
aid(t’x) of queue length and virtual waiting time is given by
ei(E,s,z). Hence “he transform of the distribution of virtual
walting time is obtained by taking the limit z -t1 in

Gi(g,s,z). That is, from (48):

(56) IWI*(F,B) lim Gi(E,s,z)

z-1

i
ﬂi(g,S,l) + g_{:{%}{lﬂil(&s,l)]

Hence it suffices io prove that:

(570 6,(r,8,1) = A (T,8)

i A
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Lemma 1.7 gives:

@®

.. (n)
(s8)  @(gs,1) = 5 E o3y (8) 4,(8,8,1)

where from lemma 1.6 wj(ﬁ,s,l) is given by:

k-1 "1
by(8,0) = £ L1 (52" (8 (e, (8)-1150A-e-heyp, () (8)1]

[eatoa(a)-1{ tohy (8)n,(8) P-a, 6, 0.0, (50, (s))

k-1
vz (-l (e,0)
vel m’2 J } ]
Substitution of this in (58) leads to:

k-1 -1
5, (5s,1) =& £ [0 (6) gy (0)- 11088 () (0)1]
m=
o mEe)11 = { (R (0,
[“hthz(s) 1] Z Y (€, ey (s)bp(s) 3= a7 (8,0)
n=

A q(n+1)

e, ()05

-

R (n) k-1 My LV (v),,
2oy (0 B (e ne) 6 (5,0} ]

which establishes (57), noting that from (33):

OQ§§)(§) = &, and from (35): I oqfn)(g.o) = vi(8) .

n=0
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Limiting Benavior of the Virtual Waiting time Proceas
The limiting behavior of the distribution of virtual
waiting time is given by:
Theorem 1.3
If )\ o + A %y < 1 the limiting distribution
lim 1Wi(t,x) = 1W(x) exists. The L.S.T. of lw(x) is

t @
given by:

(59)  qols) = (1-hog-hap) [1+h 1 A77(0,0) ]

where lAI*(O,s) is given by {55).

If Ay * Aa, > 1, then lim lwi(t,x) = 0 for all x.
t-eo

In order to prove this theorem we first show that:

Lemma 1.8
1t 7, (0= H{1{(e) = 0 | s)(0) = 4}

*
then the limit lim Pio(t) = P0 always exists. We have:
t ~»

.1l - A, - A if Aoy + A, <1
*
0 if Aal + kaz >1
Proof':

If M(:) is the renewal function of the general renewal

process formed by the ends of busy periods, then:

. ofn(K) k), A (tu)
p gz {1 < o |0y = - [ anw
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By Smith's Key Renewal Theorem,

. P Bt
lim P, (i} == e du if oy + A, <1
t be 10 n Jo ! 2
=0 if g + oy 21

1 .
where g = ¥ l-lai-kaz is the mean renewal time. Hence the
lemma is proved.

Proof of Theorem 1.3:

Summing equation (38) with respect to j we get the

distribution of virtual waiting time as:

t
(61) W (6,x) = (A (e,%) + [ A (6-uyx) @ (w)
0

+ P{n§k)(t)=o | g(k)(o)=i} U(x)

where:

J=0
Taking L.S.T. of (61):
(63)

* * t *
Wi (8) = N (60) « [N (6ase) anw)

Qi,j (t,X)

+ P (k)(t)=o | g(k)(o) = 1}

Using Smith's Key Renewal Theorem (Thecrem 4, Appendix D)

and lemma 1.8 and taking the limit of {63) we have:

33




(64)

lim lw:(t,s) = )\(l-)\al-lczz)x lA;(u,s)du+(l-)\al-ka2) ,
o

t 4@

if l-kozl - )‘O‘z >0

=0 if 1-dy - A, < 0.

(-]
gince from (k1) it can be shown that lim \y:
t = 0j=0

j(t,s) =0

* ® %
which implies from (39) that 1im .A (t,s) = 1lim T® St,s)=0.
Ll . el
t - & t - J:O

Again, (64) can be written as:

(65)

. * X% )
lim iwi(t’s) = (l—qu-xaz)t1+x141(o,s)] if 1)y -Aa, > 0,

t -

0 if 1-)‘01-)\012 <0

%
From (55) it can be shown that M (0,s) is continuous at s=0.

Hence by Zygmund's Theorem (Theorem 1, Appendix D) the

limiting distribution lim lw(t,x) = lw(x) exists and the
t -~ o

L.S.T. of 1w(x) is given by (65).

Formula (55) can be rewritten as:




m._._ S

35

- _(th‘gu)-nthl(s)nz(s)-n
kg (8) I, (8)-1J0n-8-Ah (s)h,(8) ]

)

k-1 -1
+ (% mZi[hg‘l(s)[cbhz(s)-1][A-B-kuhhl(s)hz(s)]]

Lk ,
[Um{hz(s)-lj {Umhl(s)hz(s)-l
k-1 k-l
+ Eorl-(o) z (l-w;)h;(s)ggv)(0,0)} ])
LR v
= (al(s) + .,‘2(3)
where ;l(s) and Ez(s) ~re respectively the first and the
second term of (66)
Taking the limit s - O in (6€), we see that the
numerator of Cz(s) is zero while its denominator is non-

zero. Hence:

"

LM (0,0) = 7 (0+)

%
T 14 - >
1 kal Aaa

which together with (59) gives lc,\(o+) = 1.
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Expected Value of the Limiting
Distribution of Virtual Waiting time

Let Mﬂ‘(k) denote the expected value of the limiting
distributics of 'r{k)(t)'. Then

d
(67) .M,“l(h) - 3 lw(as)]s:o

. 3
- A(l-hal-laz) % lAl (O,s)]s=o

From (6€):

** o ot
CONNE - M COI IR CORRACY

where the number of primes indicates the number of successive
derivatives taken with respect to s, Let Al(s) dencte the

numerator and Az(s) the dencminator of fl(s), so that:

(69) ACOR

2,(8)a;(s) - 8,(s)a,(s) ]
80+

a,() 1

Applying de 1'Hopital's rule four times on the right hand

side of (69) we get:
, 2
20%) = [5(0087" (0) - 81(0)ay" ()] [a3(0))

Where after simplifying we obtain:

. . . P P I T P R L SIS L e SO

et

-
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87(0) = Zhoyloy + o)

2“(0) = -3k[a (B, 20, 0,48, )+ (k-1 )02 (o0, +1. 4B, (o1, +a1 )]
1 2\ 1 12 re 2V 72 271 72

Ag(o) = - quz(-l (RN xaz)

85(0) = 3k[2(k-l)ag(-lﬂalﬂaz)+31a2(81+311a2+t32)

3]

Hence:

(K-1)or, (o +ar, ) (1-hay= Mo, )= (B, + 20 2, +B,, )
(10) /(o) = 2\11"% 20l L i e Mo
2(1-Moy -Mx,)

Differentiating gz(s) with respect to s and setting 8=0:

o, k-1 o
t 2 m
55(0) == T w -1
2 Mol (1-w )2 { m
m
K-1 k-1 ,
vy (V)
CE g F 0 0o}
J= V=3
=0y k-1 Qh
(1) "X I Toor
RV
a, k-1 k-1 k-1 um(1 uh) (v)
4+ — ¥ r (O) ; ¥ g.j (0,0) ’
A .o, 01) - (1-w)
Jj=1 v=] mel m

From the properties of the roots of the equation zk-l =0

we find that:
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k-1
‘
m=1

Kl
- ) 4
1 @ 2

k-1 o k-1

mo_ 1y ki
NN e =il
m=1 m m=l m

By the method of partial fractions we get:

s 1 (ui)(1-g Jev(i-a) P (u-1)e (1m0 )i (v-2) el (1-0)

L oaV=2 L8, V-1 2
+ v 2w (1w )T (L-g,)

which gives:

v _ ‘\l+l
k?(%uq%)— kq. 1 +k? 1 k-1 o
2 - - o l- o —'——? - _—_—2
m=1 (l-uh) =1 "% m=l (l-uh) m=1 (l-ch)
k-1 v 2
Y [l-wm - ve(v-D)e(v-2)e e
..... - Zw\)-z - c)\)—l]
m m
k-1
= v —5-)-v(k-l)+[(V-l)+(v'2)+ veeed 241]
k-l r
since 7 ¢ =-1for 1l <r <k-1.
m=1 L -7
That is:

RY
k-1 Lb(l'uh) __ v(k-v)

i 2 2
m=1 (l'uh)

Substitution of (72) and (73) in (71) yields:

(73)




rzzaw-~w-~w-u

(K-1) o,

(74) 1,(0) =

2\ ‘
2% a0 k) 60,0
- r (0) £ v(kev)g 0,0
B h o 5 J

Formula (68) together with (70) and (74) leads to:
(75)

& 10y (0,8) = ———1———)§[<k-1>a2<a1+a2)<1-ml-m2>

Z(I-Nzl-Aaz

(K-1)a,

= (Bl+201a2’62)] + .—-2-{_'

a_ k- -
2 k-1 k-1

™ orlj(o)

v(ie-v)g" ¥ (0,0)
3=l ’

v=]
It follows from (67) that:

A(B, +2x,,+B,) (K-1)a
(76) M (k) = étiflﬂ %xz )2 - 2 2
N Ao,

I k-1 k-1

+ "% (l-KQ1'Xd2) = r1~(0) ¥ V(k“V)S(V)(O’O)
j=1 4 v=J J

where Orlj(') is defined in (30).

It is worth noting that for k=1:

00~ N ngsy) | i

which is the expected value of the limiting distribution of the
virtual waiting time of an M|G|l queue with impute rate A\ and

gervice time distribution Hl*H?(°). For k=1 the tander model

o i S
N 4 e AT SN
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reduces tc an M|G |1 queue with service time distribution
Hl*Hz( i ) .
Conjecture:

For all k >1:

(17) Mnl('m) < M‘\l(k)

The proof for k=1 is simple:

From (76) we bhave:

M (2) "My () 3 [(l"""l"mz)o’n(o)gil)(o’o)'l]

o V- -
<3 [(1%1 tp) 711 (0) 1] <0

<]
rince from Theorem 3 of Appendix B

D 1 (0) < st
j=l° 13 1-knl-N32

6. Queue length Process

Let Pii(t) denote the probabiiity that at t, j customers
are in unit 1, given that the service started at time t=0

with i customers. That is:
(@) p ) = sy = 5 | %oy - 1}

Let nij(g) be the Laplace transform of Pij(t) and:

o

(19 n(52) = j;ouijmzj , 2} <1, ®(9) 20

or |z] <1, R(E) >0

For i=0 and j > O we have:




g g Al

)
(80)  m(8) = A+ dem(6) , ema
(8)  n(&) =g [1 oA m(s2)]

The equation (80) is obtained by consideri:g:

(i) 1If j=O then there can be either no arrival in [0,t]
or there is a negative exponential idle period followed by a
busy period.
(i1) If § > O there is a negative exponential jdle period
followed by a busy period, and in this case the first term on
the right hand side of (80) vanishes.
For i > O we have:
Theorem 1.4:

The generating function ni(g,z) is given by:

i
. v
(82)  x(5,2) = x(62) + gy [1 ¢ g (€2)]
where
41
(83)  x(62) = [(Ea-re)z-ny (€0-ha)] |

[zi[z-h1(§+x-xz)]-z[1-h,(g+x-xz)} v (E)
- (e Dny e ry (8- T r(Uw“Ngn+ré’uoﬂ}]
h

and r, (1), r.(€,z) are defined in (30) and (31).
o iJ oi

—_— l“ " . . S
ikttt




Proof:

Tha generating function ni(g,z) ‘s obtained by taking the
limit as s < O+ in the transform ei(g,s,z) of the joint
distribution eij(t’x) of queue length and virtual waiting time.

From Theorem 1.1 e have:

ni(t,z) lim Gi(g,s,z)

s =Q0¢*
/ 'Yi £
ﬁi\ﬁ,O,Z) + EFh-AY(E) [l+)\ Ql(g)o»z)}

Rence it suffices to prove that:

(8k4)

®)  ,(502) = x(5e)
From lemma 1.7 @.(+,.,-) is given by:

(86) n.(g,%,2) = ¥

where ¢j{g.o,z) from lemma 1.6 is given by:
- .Tl
! = - fz- - !
(87) 15 (8,0,2) L(gﬂ M2)a-h) (8h-xe)] |
\-‘ J+l . “ -
{[1-h1(§+x-kz)12 -[z-hl(§rA~n2)]qj£§,Z)
k-1
+ iy (e e 20 V(g0
1 \J J
v=l
since other terms iu the = .uwation on the right hand side of

(40) for m=1,2,....,k-1 vanish as s = 0. Substituting (87)

in (86) we £ind that:




puuireuins ngitansing

-1
(88)  4,(5,0,2) = [ (E0h-r2)[a-ny (eh-r2)] ]

(20my (2] 2 [af™(6.0)- " (5,0))

@

< eny @) T a0
n=0

- (k) 0
: (Z-l)hl(§+x-xz)35;orij(€){sé (g’2)+vf§ gj“><g,o>] ]

-1
= [(gﬂ-)\z)[z-hl(ﬁ'.ﬂ-xzn]

[zi[z-hl(§+x-xz)]-z[1-hl(§+A-XZ)] Yi(§)

- (-1 (zr2) {r, (6,2) -,? 51,09 B (e2)

5 o) ]

v=1 -
which proves (85).
Limiting Behavior of Queue length

The limit of Pij(t) as t - o always exists by a theorem

of Smith (1955).

Let us denote:

* .
(89) P = tl:mm Pij(t)
and
(90) P(z) - P: 29, 2} <1,

.
i
o

T G i we
5 LA o . )

- e ke
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Then by a standard Tauberian Thecrem (Theorem 5, Appendix D)

we have:
t
*
(91) P, = lim % J Pi.(t) dt
J t-ee o
(> ]
= lim € K e S Pi.(t) at
E 40 o] J

which together with Theorem 1.4 gives:

i

Pi(2) = lin g x(c,2)

£ <40

i

i,
glimc,é%%:XY : Lok %, (&,2)]

(1-xal-wa2)[1+xxl(o,z)] if 1-ay-ho, >0

(92)

1)

{

0 if 1-Aoy-Mey, <0

where xl(o,z) from (83) is given by:

1
XIi-hl(x-xz)]

(93)  x(0,2) - frzon Oena)] £, 0,2)

- ¢

N k-1 :
200, T Jo,00] }

1 v=
Substituticn of (93) in (92) yields the following:
Theorem 1.5
The gensrating function P*(z) of the limiting probabilities

F (' . . !
F E v) lven by:
’ (234 P 1s 8 e J




bl

A e e v S+ ke

b5

(9%)
P(2) = (1-daydry)iy (h-2e) Loty (ien2) 1 {1+ r (0,2)

(6)(0,2) 5 gl¥)
40 [, @2 E &7 0.0] }

L™

J
where orlJ.(-) is defined by (30).
The Steady State Expected Queue length

Let M (k) denote the mean of the limiting distribution

of §(k)(t) as t = o, Theorem 1.5 gives:
M (k) =5 P (z)]z 1

(l-Aql-kaz) 5 ®
(95) = ;&;:;;;}ir‘ [[2ka1(lhkal)vk 51135;3 {prlj(O)

- ? oT1,(0) s(k) )}

v

+ (1M ) ‘b(a l){ (0) f o'ly (0)5 (o)} ]
j=o

\l A2q =
c "[a [2Ac (L2 )2 %8, Je(3-1)(12ey )|

L—XP

{prlj(o) N vgiorlv(o) gi§)(0)} }

|
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CHAPTER II
SINGLE SERVER TANDEM QUEUE

WITH ZERO £WITCHING

Here we consider a tandem queue with a 2zero switching
rule in units 1 and 2. At t=0 the server starts in unit 1
and continues to serve there until tﬁe queae in unit 1 be-
comes empty. After completing the l-task the server switches
to unit 2, serves all the customers there, then switches back
to unit 1 and continues in this manner. If the whole system
is empty the server waits in unit 1 for the arrival of a
customer who initiates a busy period.

The analysis of the queue with zero switching case is
easier than non-zero switching case. The distribution of

busy period for the zero switching case is the same as in

non-gero switching case (Chap. I sectien 2).

1. Transition Probabilities of the Basic

Imbedded Semi-Markov Process

We use the same notations as in Chap. I.

[ SpN—




(1) o) = Hy=a, 7, <x | g, = 4]

= z‘r r dc(’)(u) -A(v-u) L’i};‘iﬂ_ dH(r)(v )
r=i"o

(u) (V)
The transforms qij(s) and qi(s,z) of QiJ(') are given by:

(a) = ; s f o (s1)x ()’ a1 x)

(2) %y 3T

q(s,2) = tg(r)(s,O) h;(sﬂ«-kz)

(3) = Yi 8, hz(s + A - hz)}

(by lemma 1.2)

It Q§3)< ) are the taboo probabilities defined in (1.28) then:

20 = 5 u(x)

and
(n) - -1)
(&) oQ1§ (x) = vf j: = (x-u)dQvJ(u), n>1

Their transforms are given by:

.)(s - J

(5)
.q1n>(s = I q(n 1)(5 qu(s) y A >1,




oqio)(s,z) _—

(6)

o) = T 4t g e, a2,

A further discussion of these transition probabilities is

given in Appendix B.

2. The Joint Distribution of Queue length

and Virtual Waiting time

For the definitions of queue length and virtual waiting
time we refer to Chap., I ceé¢. 4. Let E(t) and ﬂl(t) respectively

denote the queue length end virtual waiting time at t. Define:
(1) 8y(t,x) = B{E(t)=3, (8] <x | §(0)=1]

(8)
By (8,x) = P{&(t)=3, 0 < T (£) <x,Ty (1)f0 for a1l 7€(0,¢]

|§(o)=1}
Analogous to equation (1.38) we obtain:

t
(9) 8yy(tsx) = 8, (t,x) + jo 6 (t-u,x) 2 (a)

+ B{E(t)=g, T (t)=0 | §(0)=1} u(x) ,




“9
Let \bi j (t,x) denote the probability that at time t the original
cycle has not ended that (t) = j, 0 < “1(“ <x and
nl(w) # O for all 7€ (0,t], given that at t=0 the service
started in unit 1 with i1 customers.
W 3 L 2 ]
We define the transforms 6, (E,s), &, .(€E,s), ¥,.(&,8),
1j ij 13
6,(5,8,2), 4 (5,8,2) and y,(5,8,2) as in Chap. I age.<h.
Lemma 2,1
For R(s) >0, R(5) >0 and |z| <1, the transform

#i(§,s,z) is given by:

+\=-8

5028)-q, (5,21, (s))

(10)  ¥y(&s,2) = §+A_S_A§h1(s, {a,C5

+ o[ (zhy (8))1-v ) [y (8)-hy (59A-reh (s)) ]

-1
[zhl(s)-hl(g-o-)\-kzhl(s))] } ,i31,
Proof:

The probability *iJ' (t,x) is given by:

(11)
o & exbex
r=i o t v
‘ (W) (v)

dﬂgﬂ (v-u)dH](_'j)(vl—v)

\ ; % Xt jt‘.a»:cjt:ﬂr dGi(f,)(“) e-)\(t-u) A ;::g_l:j_'_“

r0v=l o ¢t v

(W)(v) (vy)

(1) (4, )

(v- u)dl-il
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The first tern is oblained by assuming that the server is

performing a 2-task at t. Tae cycle of tasks in vhich the
server is serving at ¢t steoris with 1 customers in unit 1 at
t=0 and the unit 1 becomcs ampty after r services at time
u(0 <u <t). There arc j «rrivals in (u,t). The service of
these J custouers scorts aefter the completion of the 2-task
in progrecs. Let this 2-task end at time v(t <v <t + x).
Tae cervice completion in uait 1 of the j customers occur

at tirn vl(v <v) St x). MNow we integrate and sum over

all choices of r, u, v, erd v

1
the gocond tewn is obtaiied bty assuming that the server

is porforning a 1-5czlt &b 4. The cycle of tasks in which the
goxver is rorving ot € ogteorts with 1 customers in unit 1

ot t=o. Let there be r scovice completions in unit 1 before
t. Tac 125t of theose oceurs at time u and at this time there
are v custoners walti~z in vnit 1. There are j-v arrivals
in unit L in the irservel (u,t) so that at t there are j-1
custorors in unit 1 cxcepting the customer in service. The
corvice cormletion, in uait 1, of the cuctomer in service
occurs ot tine v. Tho cervice completion, in unit 1, of the
J-1 cvrtomars oceurs ot tine vy Finally we sum over all

choleccs ol ry v, u, v, ond vl.

Fau~*2en (1)) i5 volid for all j > 0. For j=O the last

tera GircTpo~a. Upon 4-':'ng Lransforn in (11) we find:
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(12)

13(§,s)- zs(r)(s)h (s)j:e's"j:e‘(g**'s)t ;t it aBT (v)

Y (r) ® _ov’ -(Enn-8)t (At)d"Y
+ L g (§) s )l e £T~l-yr
r=0 v;1 jo jo J-v
at dHl(v)
Hence:
| R j

l [ o]
= gy LB s (9 (e)-H(5n-ha (6))]

+ 20 zlg(")(wh (s)z"[hl(s)-hl(§+x-xzh1(s))]}
r=0 v=

Using (3) and (1.14) and simplifying we prove the above lemma.
Lemma 2.2
For R(s) > 0, R(E) >0 and 'z! <1 the transform

Qi(g,s,z) is given by:

(12)
2, (55.) = Gremma %, £ [ (55 o™ (g,am (s))]

r 4
+ zthl(s)-hl(§+x-kzhl\s))]

28, () - by (8r-nam ()

RRERICENCIPE U CRCIY
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Proof’:

As in lemms 1.7 we have:

0

(W) y(6ae) = T T 2e) 1, (5,5,2)

Substituting vi(g,s,z) from lemma 2.1 and simplifying the

result follows. The convergence of the serices
w

z °qin)(s,z) is discussed in Theoren 3 of Appendix B.
n=1

Theorem 2,.

For R(s) > 0 R(g) > 0 and |z| <1, the transform
ei(f,s,z) of the joint distribution Bij(t,x) of the queue
length and virtual waiting time at t for the tandem queue

with zero switching is given by:

(15)

8,(8,8,2) = 2 (§,8,2) + E;%;ééfgy [1+A§1(§,s,z)] , .21,

where éi(g,s,z) is given by lemma 2.2,
Proof:

Similar to the proof of Theorem 1.1,

3. Distribution of Virtual Waiting time

The stochastic behavior of the process {ﬂl(t), Ot <=}
may be described as follows: ﬁl(o) is the initial
occupation time of the server. If ﬂ1@)+) = 0 then the server
is idle at t=0+. Let i be the initial queue length at t=0

and t_ the n-th arrival point and xijg the service time, in
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unit v, of the _astomer arriving at time tn. At tn the value of
nl(t) has a jump of magnitude Xgii. Between any two arrivals
nl(t) decreases linearly with slope -1. As soon as ﬂl(t) reaches
zero, it jumps suddenly to a magnitude equal to the tctal service
time of all the customers present in unit 2 at that time,

after which it linearly decreases with slop -1 until the arrival

of a new customer. This is shown graphically in Figure 2,

Q(f) a

I
t
1

f N\
: Xl‘ J
1¢0) N

O f‘ ) *L t}
Figure 2

Graph of the Stochastic Behavior of the
Process {nl(t), 0 <t <=}




Let lwi(t,x) = P(T\l(t) <x | €(0) = 1} be the

distribution function of the virtual waiting time ﬂl(t), i
given that at t=0 there are i > 1 customers in unit 1. Let
-
Wy (E,8) be the transform of lWi(t,x) defired in (1.53).
Tiyorem 2.2
. *
For R(s) > O and R(§) > O the trensform ,W, (g,s)
of the discribution function 1wi(t ,X) of the virtual waiting

time T;l(t) is given by:

i
1) WiN(Ee) = A58 ¢ gty (1 18 (89

where
-1, .,
AN AN = [sr-sany ()] {Bi(e)-v0)
wli,, Bh-s -5 £y

+ Do 5650 ] }s

and
a,(8z) =z
(18) 8, (&2) = ¥, (5,0, [6h-2e 1 (5,2)0) , n 21,
Proof:
We get W, (g,s) by taking the limit z <1 in the trans- ‘

form ei(g,s,z) of the joint distribution Oid(t,x) of the

queue length and virtual waiting time. Theorem 2.1 leads to:

P
¥ (¢,8) = zli:n1 8 (Q,s z)

(19) ™ Qi(gs‘rl) + E;g:%l*k Ql(g"'l)l
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Hence it suffices to prove that:
(20)  &(58,0) = A (68) , 131,
From lemma 2.2 we have:
(21)
8 (6,5,1) = [rr-s-pny ()17 {nd(a) + r (g, 2k,
n=1
- (n)
n§ 8 (&Y (8]

Equation (3) gives:

OO ORI O

i

(00 + :z oqg‘)(g)qd(g,s"r*)

AV (5,00 + o™ H(e, B2

which upon sumning over n leads to:

T ™) s T a™e0 . 1 (e
Ity (BN = T g M,00 4 T 06 RE)

v e 7 MY

nal

(For ccnvergence of ‘hese series wz refer to Theorem 3 in

Appendix B)

Substitution of this in (21) yields:
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(22)
-1, ®
8, (,8,1) = [w-s-ml(s)] {hi(s)-yi(g) + fl[oqin)(g’g"’)\'s)
n=

- Ve s}

-

Using lemma 2 of Aprendix B snd simplifying the above expression

we prove (20),

Limiting Distribution of Virtual Waiting time

Let lW(x) be the limiting value of lwi(t,x) as t « ©
and let luKs) be its L.S.T. The existence of the limiting
distribution can be proved by Zygmund's theorem as in
Chap. I section 5.
Theorem 2.3

The L.S.T. of the limiting distribution 1W(x) of the
virtual waiting time ﬂl(t) is given by:

(23)
(1-aoy -Aay) © res.
PR )

ir l-kal-kaz >0

a O otherwise
where the functions an(-,~) are defined in (18).
FProof':
Similar to the proof of Theorem 1.3. As in (1.65) we

obtain:




(24)

1_m(s) = (l-kal-kaz)[l +A lA;*(O,S)] if l-dog-M, >0,

i = 0 otherwise

>
where A (0,8) is given by (17):

1"1**(0’8)

= Dves-mny (s)172 h, (s)-% + Tl b, (o, “-)
-an(o,l)l}
(25) N '3-1+th ) {l'hl(s) ¥ nfiu'an(o’u)]}

- ]

The convergence of the series I [l-e (0 )] is discussed
n=1

in lemms 7 of Appendix B.
Substituion of (25) in (24) proves the theorem.
Taking the limit as 8 =+ 0in (23) we observe that:
(-2, -2x.)

(26) Lu(0) = _(____72_ [1 + z 8(0,1)]

=1 if l-)\al-laz > 0,
by lemma 1 of Appendix B.
Expected Value of the Limiting Distribution
of Virtual Waiting time

Let M.“1 denote the expected value of the liniting

distribution of ‘nl(t). Taking the derirative of (23) results

in:




ey e —T————— T T T
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- . a lb.(S) ]
MTll os =0
(1) -l g T oalo]
= 61 + - a H
2(’1-)‘01) - n=1 °
(1-ryy) =
- = 2y a;(O,l)}
n=1
Using lemma 1 of Appendix B and simplifying (27) we obtain:
%
X[Bfﬁf?(f:@_l—)alaz]
(23) M, =
N (e ) - (2]
A l-kal
Computationof higher moments seems to bu very tedious.
B +8,+ 2 a,)
e S 2
If we denote M"'l = Z(l-hal-maf which is the steady state
expected virtugl waiting time of an M|G |l queue with service
time distribution Hl*ﬂz(- ), then it can be shown that:
1 Qo 1 1
-2-}41“--—2-<l~;.“:l <clM.n- czal, for any ¢; >3, c2<-2- s
L. Distribution of Queue length
Let Pid(t)=P[§(t)=J | §(0)=1} and nn.(g) be its Laplace
transform and ¢
5 3
(29) n (52) = T w (82", R(E) >0, |z} <1
i=0
or R(%) >0, lzl <l
Theorem 2.4
The generating function xi(t_,z) is given by:




59

(30)

i
w55 = (60) ¢ i B x (6], 10,

where Xi(g,z) is given vy
(31)

1 - i, g 1
X;(E2) = yww {hz; [an(g,sk—) . &n(§,2)]

+ z[z-hl(§+k-kz)]-l[l-hl(§+x-xz)]

T [slsn) - o]} iz,

and the functions an(-,-) are defined in (18).

Proof:

Analogous to equation (1.8%) we obtain:

i
(32) ﬂi(gsz) = 51(5:0;2) + E:%:éé%g’{l+x él(ggo:z)]

where éi(g,o,z) 1s obtained from lemms 2.2:

1 e +\y 9
9,(5,0,2) = e {hzi[° (n)(g,skl) - oqin)(t,z)J

+ z[z-hl(§+k-lz)}’l[l-hl(§+X'15)}
b o)

- Xi(g,z)

- (by lemma 2 in Appendix B)

T . Nt R A R R




P

which together with (32) proves (30).

Limiting Distribution of Queue length

*
Let P, = lim P, (%)
Y taw i)
and
* ®
(33 @)= T R, 2] <,
J=0
where the existence of the limit is established as in Chap. I
section 6.
Theorem 2.5
*
The generating function P (z) is given by:
(34)

(1~).a1-ka )h (X-)\z) @
2/ ,
h, (-2e)-z nz; 1'3n(0,2)} if 1-My-Aa, >0

P*(z) =

= 0 otherwise,
where the functions an(-,-) are defined in (18).
Proot:

It follows as in (1.92) that:

(35) P'(2)= Lim € x,(E,2)
£ =0
= (l-xai-kaz) [1 + )\ X1«>,z)] ir 1-Xal-ka2 >0,

= 0 otherwisge,

vhere XI(O,:) is given by (31):

60

]
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(36) %, (0,2) = - ,\z {; [an(O,l) - an(O,Z)]

n=1

+ z[z-hl(k-kz)]-l[l-hl(x-kz)]

[ (oz)-a(01)'|}

!l ~ 8

n

== {} + E:F;TX:XET nzg [l-an(o,z)] }

Substituti.n of (36) in (35) proves the theorem.
It can be shown that:

PY(1) =

Expected Value of the Limiting Distridbution
- of Queue length
- Let M§ denote the expected value of the liniting distribution

of §(t). From Theorem 2.5 we obtain:

. ] *
M=% T (’)]z:l

(l )\(11 -\ ) 2 @
2)a, (1- + T 2'(0,1
e Patea] T e

+ (1-xal) ;; a;(o,l)}
n=

2l .
X (8,+8,)+2Ax, (1-)a, )
(37) ) P2 ’1 B!

2(1-2x ) 2~ ( )?

1- kai

(by lemme 1 in Appendix B)

- = )\ o A Mﬁl

[
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5. Distribution of Total Time in the System

Consider all the customers present in unit 1 at time ¢.
Their total time required to complete services in unit 1 as

well as in unit 2 is defined as the total time ia the system

at t. We denote by 112(1:) the total time in the system at t
for the gero switching case.

Let z"i(t”‘) = P{‘na(t) <x | §0) = 1} be the
distribution function of the total time in the system ﬂz(t),
given that the queue length at t=0 1is i.

Further ve demote:
(38)
oA (6,1)=B{0 < () < x,T,(x)f0 for a1l 7€(0,1 | &(0) = 1}

and let 2)(3(1: ,X) be the probability that at time t the original
cycle has not ended and that 0 < T,(t) <x and

ﬂz(‘t) # 0 for all 1€(0,t], given that at t=0 the service started
in unit 1 with i customers. Anaiogous to equations (1.38) and
(1.39) we obtain:

(39) i
My(6x) = A (%) + [ o (beu,x) g (u)
o

+ P {T\z(t) =0 | g0) = 1} U(x)

qm
(o)

L3 o« t
A(tx) = T T I %Qﬁ'

)
( ) X (t‘u: )
0 jsl "o * ¢ )
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For R(s) > O and R(E) > O we define the following transforms:

zw;*( gis) = I

&
e j e X dawj(t,x) dt
[») o]

- 2I\':]M'(E,za) = j‘:e-l;t Ee-sx dzAj(t,x) it

we (7 g (© -sx
2"‘3 (t,8) = Io e jo e dzxd(t,x) at

Lemma 2.

4
For R(8) > 0 and R(§) > O the transform ., (g,8) is

given by:

(41)
> - r-g+AY, (8)
Xy (£.8) = [e-a4aY, (5)-An ()Y, (o) | l{qjts.—'-;-i-'—]

- g lEmy(a)Yy ()1 +

-1
[Yl(s)-hl(Eﬂ-)‘hz(s)‘!l(l))}
[hl(gﬂ-ﬂl(s))-hl( E+A-An,(s)Y, (s) )]

' [(“a(')vl('))’ - 43(5’5:;"-_3)}} »d 21

Proof:

The probadility ?xj(t,x) is given in terms of the

¢
probabilities Gi?)( .) by:

. - ¢ ——
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(k2)
® © ® ® L bx bex Wb
xex=2 T 7 o [T aelP
r=J v1=0v2=0r1 =\ v ot v vy

L 2)(v) (v)) (v3)

\)l \’2
o-Mt-u) [M_,).l__tlu e M(v-t) DAv-t)] © ";:.. a 1) (veu)

(r) (v)

1
*d G -v)d H -
vy vl+v2,o(vl v) vz 2 (VZ vl)
® © ® t L bx bexotx (r)
b T OLOT zjjjjdc(u)
r=0v=1v, =0V,=0r, =v+v, +v,-1"0 vy v

271 (u)(v) (v )(v3)
v v
R _Lxg*\:;)] Y hv-t) LL(‘T’)_;.*,‘.U.E 4 H, (v-u)

(ry) (r+vrv; ) (v

- d_G (vv)dH

-vl)
vl v+vl+vz-l o

The first term 1s obtained by assuming that the server is

performing a 2-task at time t. The cycle of tasks in which

the server is serving at t atarts with j customers in unit 1

at t=0, and the unit ! becomes ampty nfter r services at time

u. The number of arrivals in unit 1 between times u and t is

Vs The r customers in unit 2 at time u have service completion
&t time v and v, is the number of arrivals in unit 1 vetween

tires ¢t and v. At time v there are \’1*“2 customers in unit 1.
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Starting with W +V, customers at time v, unit 1 becomes empty
after ry services a. time vy The gervice completion of the
vy customers in unit 2 occurs at time Ve Finally we integrate
and sum over all choices of r, Vis Vg Ty u, v, vis and vz.

The second term 18 ebtained by assuming that the server

is performing a l-task at time t. The cycle of tasks in which
the server is serving at t starts with j customers in unit 1

at t=0, There are r service completions in unit 1 before t,
The last service completion before t occurs at time u, at

which there are v customers waiting in unit 1. The number of
arrivals =2 unit 1 between times u and t is V- The service
compietion of the customer in service at t occurs at time v

and there are¢ Vo arrivals between t and v. At time v there

ar: Wy +v2~l customers waiting in unit 1. GSterting with these

1
vy, +v,~1 customers at time v, unit 1 becemes empty after r,

1 72
services at time ME Lastly the service coméletion of the
T+U+Vy customers, who arrived in unit 1 up to time t, occurs
in unit 2 et time Voo Now we sum and integrete over all

choices of r, v, V» Voo Tys U, Yy Yy, and Ve

Taking the transform of (42):




€6

s e e — ottt

(43)

o= W )
DI 3 om0 g, b )

X (&,8)
- 3 38) = i} jo +Vv,30
V1 OV,=0T 2w, 4V, V2

drs

r

. r e_(gﬂ)t Q\tzvl 2 r e_(s+)\)v()‘_\i\r’3 P H(r)(v+t)
o vy o vz. v'e

® © ® © .co THvty (r)
P S B o O Pl

vwl+v2-1,o

(s)

. , © V2
°jo e (1)t }‘f‘)l'. dtI S K_L-’\:z,. a_H, (v+t)

0

Using lemma 1.1 and simplifying the abcve expression leads to:

() [ (s)Y,{s)]
@ o ~[E+A-2h Y,(5)]t
ZX;*(E,S) = Z‘s(-z)(é) [e 25 dt
S By ()]
© ~S+h= \
. I e ° e 1 H(r)(v+t)

v 2
(o]

® o \ " o -[§+A-an, (s)Y, (8)]t
T Ig§:)(g)h§+ ’(s)vi l(s)“; e CAR dt
r=Cw1l 0

+

) -f,sM-XYl(s)]v
j e dvﬂl(vﬂz)

o) ¥

o O -{Sf)\-)‘Yl(s)]V
e

[}
™
o
»
e}
S
~~~
~
N
ey

N CE Ao
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® ~lg+h=0Y
e 5 e o
r=0 y=1 ]

Iv -[g-s+xY (s)- Ahz(s) ()]t

at ngr)(v)

[g-s+xvl(s) A, (8)Y (s)] {rz g(’)(c)[h;(s+x-xvl(a))
- np(Eh-An, ()Y, (s)) ]

‘s s ggr)(g)h§+“( w,” (s)[h (s+h-1Y, (s))
r=0 v=1

- by (sA-any ()Y, () ] }

Using (3) and (1.14) and simplifying further:
(45)

ANC)
2y (g,s) = [g-s+le(s) Ah,(s)Y (S)] {9 (¢, = -

-1
ERCSROANE [v1<s>-nl<g+x-xn2<s)v1(s>)]
 [(nglarn @) - ¥(enyte))] [by(an-avy (o))

= b (&ehean, (8)¥, (1) ] }

Thia together with Vi((,hz(a)) = qd(ﬁ,stfzi) proves the lemma.




Lemma 2,4

For R(s) > 0 and R(£) > O the transform oM (g,s) is given
by:
(46)

2A;*(g, [§'8+KV (8)-ah (B)Yl(s)] {n [ai E,E-s+AY (s))

-1
- en(Sng(ely ()] + [1y(o)ny (gr2-wny()vy 1)

 [By(ssaeay, (8))-ny (r-hn, (a)Y, ()]

- [y(e)v (N4 () + RACCEROWOP

f5.2) )

where the functions a (-,-) are defined in (18).
Proof:
Upon transformation of (40) yields:
A (§,8) = T (é).. (g)
S n-031 27y 1>8

Substitution of lemma 2.3 results in:




o R A

AR Mo s - - -
.
B

£9

(1)
. _ -1, ® §-s+kY1(s)
A () = [senyy@)ang(em@)] { 2], (n) (g,—

-1
- 2 (g, (8% (0)) ¥, (8)-1y (8A-Mng(e)¥; (6)) |

. [hl(m-ml(s)) -hl(m-hhz(s)Yl(S))]

: [(hz(s)vl(s))"-ngl M (5,0) + ngl(oqi“)(g,ha(s)vl(s)),

B oqin)(g’st%:i))] }

This and lemms 2 in Append’x B together with

; c,qgn)(g,o) - Y'(€) prove the iemma.
- n=1

Theorenm 2.5
*

For R(s) > O and R(E) > O the transform W, (€,8) of the
distribution function 2wi(t,x) of the total time in the system is
given by:

(48)

i
FE8) = 0 (5) + ey (2 H oM (B0) ) 1 21,

W
where A (€,5) is given by lemma 2.L.
Proof:

Similar to the proof of Theorem 2.2.




Limiting Distribution of the Total Time in the System

Let W(x) = lim _W, (t,x) and .o(s) be its L.S.T.
2 oo 21 2

The existence of the limiting distribution can be proved as
in Chap. I section 5.
Theorem 2,6

The L.S.T. of the limiting distribution of the total time

in the sgystem is given by:

(49)  ,els)

]

(l-kal-kaz)[l+k 2lg*(o,s)] if 1-Aoy-ha, >0,

O otherwise,

** (]
where A (0,8) is given by:

-1, @ \Y,(s)-8
2I‘..T:*(o,s) = [-sﬂYl(s)-)\hz(s)Yl(s)] {nfl[an(o’—}-)‘-——)

- &, (0h,(8)Y, (s)) ] +
- -1
[, (s)-n) (=X, ()Y, (8) |

+ [ (s4r=nY, (8))-8, (-kn, (8}, (2)) ]

. :hz(s)Yl(s)-l + n:;l(an(o,hz(s)vl(s))-an(c.,.).;;‘i‘?\)] }

and the functions an(-,-) are defined in (18).
Proof:

Equation (49) is obtained as in Theorem 2.3 and (50) from

lemma 2.4 by taking € =+ 0.

g




In (50) taking the limit & -4 O, we observe that:

[ -]
" a, + -1-;-:—1- }:0 a!(0,1)
(51) zAl (0,0) = (l - )\—a_z')
o *+a
l-kai-kaz

(by lemma 1 in Appendix B)

Now from (49) it is easily seen that:
2&)(0) =1 if 1-)‘01-)‘02 > 0.

The Steady State Expected Value of the Total

Time in the System

Let M“ denote the expected value of the limiting
2
distribution of ﬂz(t). From (49) we have:

9
M, " % 2“’(3)}830

#

"

(52) - Misday-hag) 55 o0 (00)]

To find the derivative e A;*(o,s)] we will proceed as
os 2 =0

follows:

Let Al(s) and Aa(s) denote respectively the numerator and
denominator of ZA;*(C,a)‘ That is:

71

T
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———
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(53)

@ A ( )-
8, (8) = [ Yy (8)hy (A-Ab,(8)V, (s))] nfl[an(o, les 3

- 2,(0,,()v,(s)) ] * [y (89027, (s))

- by (A=An (), (8)) ] [, ()Y, (8)-1

= (8,(0m(8)¥, ())-5,(0,58) )] }
n=

(54)

Ba(8) = [~e+xY, (s)-An,(8)¥; (5) ] [, ()b, (h-An, (s), (s)) ]

3 e 8,(8) 8,(8) - & (s) 8,(s)-
55 2. , -
(55) 3 2l (o S)-Jsao [Az(s)_]E Js=0

Applying l'Hopital's rule four times:

8;(0) 87(0) - 81(0) 85(0)
3&5(0)17

IR
56 S )] -

where the number of primes indicates the number of successive

derivatives taken with respect to s,

- s i e e e e e

72
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Computations yield:

2 oy (g +2,)(L - Aay)?
(57) Al(o) alal %

Acxl-xoe

-3(1-aa, ) (e ry)

8,0) = i, -\a,

{ By ' 2, . A 2
(1-k01)2

=y (B, +

(58) 85(0) = acl(l-mz)z

8,(0) = - 3(1-Aa2){(1-)‘ X = Byd (o, 1-;\01)
- 2\ (B, + :’3’:2)}

Substituting these values in (56) and simplifying we obtain:
(59)

(2-x,) =
3 el 9 al « .
B 2Al (O’S)l 2(1 M 7 { A(2- )‘al) nfl an(O,l)

N 5y S 3 AN s Tl M B i i 1




T T T T ————— T ——

[

7 o

Y 4

+

By * 52(1"‘01)2 + 20‘10‘2(1"‘0‘1) }
(1-xai552i-lgl-la2)
A -1
.- {2(1-Aoi)3[1-(1g%5;)2] (l'xai‘kaz)}

{(1-20) (142ty) (B 18,)+ 220 2, [ (30 ) 2 1}
(by lemma 1 in Appendix B)

Equation (52) together with (59) yields:

_ M(-hy ) (14205 (8,8, 2000, (12 ) Sk 1}

",

o
202 - 3’ - ()]

6. The State of the Server

Ia this section we try to answer questions of the type:

(1) What is the probability that at time t the server is
busy (or id1e)? (ii) If the sorver is busy at t what is the
prsbaﬁiliiy that he is serving in unit 1 (or unit 2)?
(111) And if he is serving in unit 1 (or unit 2) at t whst
is the probability that he is serving the r-th custome: of
the cycle in unit 1 (er unit 2)?

) Finally we study the limiting behavior'sf the above
pﬁ.ﬁ&b;l;ties.

We define the fclluwing prnbabilities:

Th




o i somp. Pt it o b n

75

evr(t/i) is the probability that at t the r-th customer

of a cycle of tasks in unit v, v=1,2, is being served, given

that the service started st t=0 with i > Q customers in unit 1,

and its transform:

o

(61) 9:r(s/i) - j e 5 0 (t/1) at, w12,

o
Purther, 6 (t/i, is the probability that at t the server is serving
in unit v, v=1,2, given that at t=0 there were i > O customers

in unit 1. Then:

™M 8

() e (t/1) =

. evr(t/i) ; v=1,2,

1

Lemma 2.5

The transforms G:r(S/i) of Bvr(t/i) are given by:

(63)
* L N (r-2) -1
o] (&) = T [1-n)(9)] I oyl [6" e0)-67 M 5,00

() -
e 2 [y (w)] jf 1509 [P 0-6"H(g,00]
(64)

oy (t11) = ¢ [1 -ny(8) | z (.)s,“)(;, “Le)

an “(ran) 071

ml(€)
TR

(0] T 3 Iiran) o1l 985" (505 HE)

- 1:1 n:d

. \ (C)
vhere Orij( ) is defined in (1.30), ml(ﬁ, in (1.52), 8 ()

in (1.6) and:




e W as aammrens waeos Eae

i s

W 14 b =

I[J'Sl]=l ifr<nend Oifr >n.

Proof:
Let oevr&|i) be the probability that ot time t the server is serv-
irg the r-th customer of an arbitrary. cycle of tasks, in unit v,
given that the queue has not become empty in [0.t] and that at
t=0 the service started with i >0 customers in unit 1. Then:

(65)

™8

o ® t t
- (n) (r-1) g -
k) - T T 2 ooy [ asg -

JEEENCEN]
If the queue has never become empty in [o,t], let the server be
serving in the (n+l)th cycle of tasks at t, n > O. At the end
of the n-th cycle of tasks there are j > 1 customers in unit 1,
given that at t=0 there were i customers in unit 1, and the
n-th cycle of tasks ended between u and u+du. This probability
is given by dOQ§?)(u). Starting with j customers in unit 1 at
time u, there are at least (r-1) services up to time 9 which
is the last epoch of service completion before t and at the end
of the (r-1)th service J; 21 customers are waiting in unit 1.
This probability is given by the second integral. The last
factor [l'ﬂl(t'“l)] ensures that at time t the server is serving
the r-th customer. Finally we sum over sll cholces of n, jJ, Jl’

u and u, to obtain (§5).

1

e e - - e e

- ek e b G
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By e similar argument we get:

(66)
® .
062r(t ) - n-ii) le v-z-: I[r<v] .[d Qid>(u)I dG(V)(ul u) | ’

R
o'

where the factor I[r<w] is present because if unit 1 has v
services then unit 2 can have only at most v services.
The Laplace transforms of (65) and (66) lead to:

(67)

-~}

(810 = £ [10,(9)] RELRENG g(’ Ye)

_.

(68)

*

0
0 5. (8l1)

v)
z [1- hz\g)] z z s o 13\5)330 ()3 1(e)
The usual renewal argument gives:

(69) 0 (sl1) = 6% (slk) + m(5) 6% (KH) , vel,z,.

Substitution of (€7) and (68) in (69) proves the lemms.

Lemma 2.6

I 9:(§|1) is the Laplace transform of ev(tli), then:




» 1 2
LU SEVCI LS (o)

+ 3 m(8) E oy [1-v@)]

() ejteh) - ngor“(z) [H(0-venyen)

+m(®) 3:’;1 o138 [0l (sny(en)]

where 'Yl(') and Yl(',‘) are defined in lemma 1.2,
Proof:

This is immediate upon summing over r >1 in (63) and (64)
and using lemms 1.3.
Lemma 2.

If l-kal-kaz > 0, the following limiting probabilities
are:
(12)

» =

| _ o (r-1)
) g an (1) = 2oy (130 hap) Jfl Jlfl o"u(°)5331 ”

73)

. )
(12) din_ 0 (1) = dop(ioden-1ay) I L Tk EORIIO)

(T4}
(111) Um 0 (¢ ) = M, w2,

t 4o
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Proof:

The proof follows from a Tauberian Theorem (Theorem 5,

Appendix D):

75) lim 6 (t[i) = 1im g6 (5l 1,2
( t-tﬂvr' £ =0 wl)’\F))
(76) lim 6 (t]1) = lm €e'(els), vel,2,

Hence using (75) in lemma 2.5 we get (72) and (73).
Using (76) in (70) and (71) we have for y=1,2:

Aav(l-)al-xaz) ®

They 45 Y o ©

(17) lim ev(t l1) =

t @@

Theorem 4 in Appendix B gives:
Ax

L j or,(0)=1+—fue
=10 o N *-hay Mg
1-
(18) = I k-x}‘a
@ =AGa

Substitutionof (78) in (77) proves (7).

If 6(t|i) is the probability that the server is busy
at time t, given that the service started at t=Q with 1 >0

customers in unit 1, then the Laplace transform 9*(1;[1) of

8(t 1.} is given by:

79
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(19)

o*(sle) - 3 J:’;lo‘is“) [2 - Weany(en)

+ % ml(g) Jfl orlj(g) [ 1l- Y‘i(g,hz(ﬁ)):\ s

Further the stationary probability that the server is

busy is chl + haz and hence the staiionary probability that

the server is idle is l-kal-haz.

Proof':
We have:
(80) e(tli) = el(t11) + 0,(t i)

which gives:
(81) 6*(§|1) = 9;(§\i) + e;(gli)

Hence (79) follows from (81) and lemma 2.6.

. lim 6(t|i) = lim 91(t|i) + lim 92(t|1)
‘ t 4 t 4o t o
=N11'!'M2.
(by lemma 2.7)
.g ' Expected length of a cycle of taska. Starting with J >0

customers in unit 1, the expected duration of a cycle of tasks is:




d
- = qj(s,l)]ﬂ=0 = - 'aa'E vi(s,ha(s))]m

3oy +ar,)

(82) “Tha

Expected sojourn time. Consider the Semi-Markov sequence

[Eh,Tn,n > 0} defined in (1.3). Let ﬂj be the expected

sojourn time of this process in state j. Then:

1. R T%
(B3) M=yt
J(oy*ary)

where (83a) is obtained from the fact that once the process
reached the state zero, there is a negative exponential idle
period with expected duration % and further a cycle of tasks
started with a single cutomer in unit 1 whose expected value

is given by (82). (83b) is obvious from (82). g

Mean recurrence time, Let y be the mean recurrence time of

state j of the process {En}. Then:

- ¥'(0), Y(+) defined in (2.1) ,

>

By =

1
R l'wl'wz
Let Mid(t) be the expected number of visits to state j by the

process [En] in (o,t], given that §° =i, and nij(.) be its

L.S.T. Then:
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85)  myyls) = m (s) Tz gmyy(e) - m(e), 121, 521

where omi;](') are defined in (1.30).
This is obtained from the consideration that a visit to 3
can occur either with or without an intermediate visit to the
state 0 [Neuts (1969)].
From (85) we get for j > 1:

p,-l lim s mid(s)

J § =0

i

omlj(o) slimo s mio(s)

(86) om(0) W

If pij(t) is the probability that the Semi-Markov process
is in state j, given that it started in state 1 at t=0,

andp;= lim pij(t) then:

t 4o
n
*od
(87) pj-g' ’JZO)

Jubstitution of (83), (84) and (86) in (87) yields:
Py = (14 hap) (1o = day) | (1< day)

and

py = (oytay) ooy 0,3 m (O)}{(1-4ey), 421,
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7. Generalizations

The Tandem Queue With More Than Two Units

Let us consider m(> 2) service units. The input to
unit 1 is a Poisson process of density A, and the input to
the (r+l)th unit is the output from the r-th unit,
r=1,2,...,m-1. After getting service in the m-th unit the
customers depart from the whole system.

At t=0 a single server starts serving in unit 1. He
switches from unit 1 either by a zero switching rule or
by a non-zero switching rule, while he always observes a
zero switch rule in all other units 2,...,m. In all the
units the customers are served by the order of their arrivals
and the server is busy as long as there iz at least one
customer in the whole system. Service times are assumed to
be mutually independent positive random variablesg and
independent of arrival times.

Each cycle of tasks consists of m tasks, task-l,...,
task-m, and each busy period consists of a random number of

such cycles.

Let Hl(')""’ﬂm(') be the service time distributions in
unit 1,...,unit m respectively. The distributions of busy
period and virtual waiting time and queue length are cbtained
by replacing Hz(-) by Hz(-)*ﬂ3(-)*.. .*Hm(-) in the results of

two units. The corresponding moments are obtained by replacing

»

n a -l @ .
a, by £ g, amd B by £ B, 2 £ T a, a
27 g2 1 % T2 gazgeta 1Y '

i s e -
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(-] o
where o, = jde (x) and B, = I xde (x)y v=2,...,m
v Voo v

Infinite Tandem Queues. Suppose that the number of service

units m is infinite. Let Sv be the aervice time of a customer
in unit v, w=1,2,,... . Then sl,sz,... are independent random
variables with distribution functions Hl(' ) H2(~),. .

Thoorem 2.7, Convergence Theorem

.- [--]
(a) I£a= % o, end g = T B"\‘o < ® then the distribution
v=1l v=1l

Gm(') of the service time of a customer in the first m units,

8 + ...+ 8, converges to a probability distribution G, (")

&

with first and second moments o and B respectively.
(-~}

(b) The total service time I 8 of a customer converges in
v=1

law if and only if for & fixed c > o the three series

(1) ngl".: dHn(x)) (ii) n§]a£C) and (iii)nzn‘lar(lC) converge,

where ax(1C) = r: x d}{n(x) and ﬁgc) = Xc x2 dHn(x).
) o

For the proof of this theorem we refer to Feller (1966).

If the service time distributions are negative exponential,
x

Hv(x) = l-e ,» v=l,2,..., then by the convergence thcorem the

distribution of 81+. . .+Sm converges to a probability distribution

[
6, (*)1r T e G,(t) gives the probability that ®
V=l

customer will be served in infinitely many units defore epoch

t.

B
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Under the conditions of convergence we have:

-] @
P{Zssx}an * H (x)
v=l ¥ w1l v

which is the convolution of Hl(-), Hz(-),....
Hence the distributions of busy period, virtual waiting time

and queue length are obtained by replacing Hz(') by

n *Hv(-) in the results of two units.
=2

Equilibrium Conditions of the Infinite Tandem Queues. Under the

conditions of convergence of the total service time of a

customer, the queue will attain its equilibrium if

(-]

1-A T o,, > 0. This follows from the results of an Mie
v=1 @

queue with service time distribution n * Hv(x) .

v=1l
The Tandem Queue with Balking

Consider the tandem queue with two units. Let p be
the probability that a customer joins the queue in unit &
and l-p the probability that he leaves the system after
getting service in unit 1, The distribution of busy pericd,
virtual waiting time and queue length of this model can easily
be studied from the following consid:rations: We asaume that
all the customers after getting service in unit 1 go through
unit 2 and get a non-zery service there with prcbability p
and a zero service with probability l-p. The distridbution of

service time of a customer entering unit 2 is:




(88) p Hyl+) + (1-p) ()

Hence the distributions of busy period, virtual weiting time, ete.

can be obtained from the non-balking case by replacing Ri(')

by (88). To get the moments, a, is replaced by p o, and B,

by p B,

In the case of the tandem queue with m service units,

let P, t» the probability that a customer joins the queue

in unit v+ and l-pv the probebility that he leaves the system

after getiing service in unit v, wl,2,...,m-1. Here also

we assume that each customer after getting service in wnit 1

goes through all the remaining (m-l) units and gets a non-zero

v-l

service in unit v witn probability ( « pi) and a zero service
v-1 i=l

with probability [1 -(x pi)] y v=2,...,m. The distribution

i=1
of service time of & customer in unit v is:

®) (o) H() Cr e u
H{(:)+]|1 - U(e
g P [ 11 )]

Hence the different distributions of interest can be obtained

from the non-balking case with m service units by replacing

Hv(') oy (89)’ AL TR %

8. Applicat.ons '
The tandem models considered in Chapters I and II can

be viewed as a modified alternating priority model. In the

altermating priority model [Avi-Ttzhak, Mexwell and Miller (1965),

B e e e b o s —c—— s b & -
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Neuts an® Yadin (1968), Takdcs (1968)] customers arrive at two
service units, unit 1 and unit 2, in accordance with Poisson
process of densities xl and Xz. A single server attends to
two units elternately according to zerc awitch rule and serves
the customers in the order of their arrivals. 1In this

alternating priority model suppouse that the input to unit 2

is stored there as long as the scrver is serving in unit 1.

Once the servei started serving in unit 2 the input to it is

shut off and stored in unit 1 until he switches back to unit 1.

As soon as the server switches back to unit 1 the stored input

of unit 2 is released from unit 1 to unit 2. This modification

is reasonable in cases where the arrival of a customer in unit 2
causes service interruption there or in cases where nonly those
customers of unit 2 who have arrived during the service time
of the customers of unit 1 have priority over the customers
arriving in unit ' thereafter.

The analysis of this modiried alternating priority model
can be easily deduced from our tandem model: Customers arrive

at & service system in accordance with a Poisson process of

'dcnaity A. Independently of others an arriving customer is of

type 1 with probability P, or cof type 2 with provability Py

where pl+p2 =1, ll = kpl, lz = Apz. All the arriving customers
pass through both the units 1 and 2. A type 1 customer receivus
a non-zero service in unit 1 and zero gervice in unit 2, while a

type 2 customer receives a zero service inunit l and e non-sero
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service in unit 2. The service time distribution in unit 1
of an arriving customer is Hl(-) with probability Py and

U(-) with probability Po» while his service time distribution
in unit 2 is Hz(-) with probability p, and U(+) with
probability Pys where U(-) is the unit distribution. Hence

‘n ouwr analysis in Chapters I and II we replace Hl(x) by

Pyl (x) + poU(x) and Hy(x) by pHy(x) + pU(x).
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CHAPIER III

ALTERNATING PRIORITY QUEUES WITH

NON-ZERO SWITCHING

1. Concepts and Definitions

This chapter discusses a queueing model in which a single
server serves two units 1 and 2; the input processes to these
are independent Poisson processes of rates Al and Aa
respectively. The server attends the two units alternately
according to a non-zero switching rule. He continues to
serve in unit v unitl he has given kv services without
interruption there or until the queue becomes empty which-
ever comes first-;kvv=l,2, are positive integers, which
are called the switcﬁing parameters. The alternating priority
queues with zero-switching (kl=k2=°) have been studied by
several authors: Avi-Itzhak, Maxwell and Miller (1965),

Neuts and Yadin (1968), Takacs (1968).

It is assumed that at both units customers are served
in the order of their arrivals. The service times are
mutually independent positive random variables; independent
of the arrival times. Denote by Hl(-) and H2(~) the

distribution functions of service times in units 1 and 2

respectively,




bolbaginiiucr e e
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We use the following notation:

0
j e'sdev(x), v=1,2, R(s) >0,
o

b (s)

0
a, = Io x de(x), v=1,2.

2. Distribution of Busy Period

We recall that a task is the time interval spent without
interruption in a unit. A task in unit v is referred to as
a v-task. It consists of atmcst kv consecutive gervices
v=l,2.

Suppose that at t=0 the server starts serving in a unit.
The time required for both the units to become empty
simultaneously for the first time is called a busy pericd.
If the busy period starts with the service of a customer
in unit v then the corresponding busy period is called a
v-busy period (or busy period of type v), v=i,2. Let “v(')
denote the distribution function of type v busy period,
v=1,2.

The system becomes idle when both the units are empty.
The 1dle period has a negative exponential distribution with
parameter Al + Az. After an idle period a new busy periocd
starts in the unit in which a customer arrives first.

Remark:
As in Nevts and Yadin (1968), if the unit to which the

server switches is empty then we assume that he instantanecusly
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completes a task of duration of zero there and switches back ]
to the other unit.

Since the distribution of busy periocd does not depend

on the switching rule, [We.ch (1965)], it follows from Neuts
and Yadin (1968) that:
Theorem 3.1

ifr Gl(s) and 62(3) are the L.S.T of "1(°) and ”2(')
respectively then:

(i) For every s wtih R(s) > O, the pair Bl(s) and 92(8) is

the unique solution to the following system of equatiocas:

(1) (2)
2y = By (890 Aph 2y -hp2,)s 25 = By(sthgthg-hyzy Aoz, |

. (2) (bj 2, = Yl(s+)\2-)‘222) y 2y = Yz(sﬂl-)\lzl)

- in the region |z1| <1, lzz| <1, where Yv(-) is the L.S.T
of the distributicn of tusy period of an MlG 1 queue with
input rate A and service time distribution Hv(-), v=l,2,

(3)(i1) 6,(0+) = 6,(0+) = 1 if and only if l-Agy-hay 2 O

P (iii) If 1-\y-\a, > O then the means of xl(') and nz(-)
. are given by:
al ' °‘a
(&) -0/ (0+) = —te— | -6, (0+) = S
1 1"“’1 kaz 2 1-m1 )\az
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3. The Basic Imbedded Semi-Markov

Process and its Transition Prohabilities

We suppose that at t=0 there are i, 21 customers in
unit 1 and i, > O customers in unit 2. Furthermore s customer
in unit 1 is Jjust beginning service. We may also start with
other initial conditions.

Let us define the seéuence of random variables to,tl,...,
where to=0 and tn is the duration of the n-th task. The odd

numbered variables tl,t are the durations of tasks in

3o
unit 1 and the even numbered variabies tz’th"" are the
durations of tasks in unit 2. Let & = (‘-'&(11)’5:(12)) be the
number of customers in the system (unit 1, unit 2) at the

end of the n-th task, n > 1 and § = (il,iz). Further let

Qn b2 a random variable which :akes valu=s 1 and 2 depending
on whether the (n+l)th task is a l-task er & 2-task,

n>l, g°=1. It then follows from the regenerative preperties

of the input and service processes that the quadrivariate

sequence of random variarles:

o 6, 0 nz0)

is a S=mi-Markov sequence with state space:

{1,2} X {0,1,...} X {0,1,...}

Te study the transition probabilities ef the semi-Markcv

sequence defined in (5) we define the auxilisry probability

o)

204 4 (x) as:

functions 10£§)(x) and

PO

e




93

(6e) S0 =5 UM) vz,

and for n > 1, G( )(x) is the probability that, in an M|G |1

queus of input rate A and service tim= distribution Hv(') the

initial busy period involves at least n services, thai the n-th

gservice is completed betore time x and that at the end of the
n-th service there are j customers waiting, given that there

were i customers initiaslly, v<l,2.

Ay ()it
@) - [ Y iy ane e,
(6c) -
Ay Oy
& irjwl) r ( )(x -y)e V G_y_r_:m__d}{v(y), n>l1,

(n) (n)
Let 8, (s) be the L.S.T. of jop (x) and

(1) vsgn)(s,!) = I 8 iJ)(s) z¥, |z| <1, v=1,2,
j=0
Then for vw=1,2:
(.)\s z) =z}
(8) e{l)( 22 R (so-n z)
i $,2) = 2 v \VERRY
( "l) h (S*k -A Z)

e (e,0) - 2 v D[ gMie ) - g(M(e,0)],

pY

n>1l,

B e e, -
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The results analogous to lemma 1.l through lemma 1.5 are
easily seen to be satisfied by the probability functions

vdi:)(x).

Let us denote:
(9) £' (11’12) ’ L' (Jl,Jz)s 0= (0,0), z = (21:32)

Define the transition probability functions:
2
(20) Q (L,4,x) = P {c;z,g,(,l)ﬁl.gﬁ )=32. T, £X

| €12 §(1)-11 §£

(M) o) = Mo L g B, 1 <

(2
- | €nr=2s s(11. =1y %-%‘12

221,20 1)

u(x), 1r 4 =0,41,>1

%4, 179 =0 1,
= O for all other choices of the indices

- except for 11 = 12 = 0

z1,

s . s




For i 0=1i_:

1l

(16)
* @ ®
(1,2,8) = £ L q(i,i,s)z
. EN$I3S 3120 §,=0 v

From (12) to (15) we get:

o]
X
(15) Qx(0,3,%) = 30 Q,(0,15§,%-u) e

3y 3,

2t
(1%) Q]_(Q;,bx) = r Ql(l,O; §, x-u) e

-(x

2

0 for all other indices except il = iz = 0

+)\z)u

1 kl du ,

+l2)u

)‘2 du ,

Let qv(bl,s) be the L.S.T. of Q\’(}J,L,x) and

’ Izv‘ <, v=1,2,
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Lo (k)
(17) ay(4,2,8) = 2,° {Jsill (41,71,2,5,3, )

k-1
+ T g8 (sMphgzp,0))s 424 21,
- r=il 1

i

2,0 1£4,2 0, 1, 21

1 4

i (k)
1 2
2 {2512 (s42)-Ay2,,2,)

k.-l

2

r—i2 2

(18) q3(1,2,8)

!

%

W

,if1, 20,4 >1

2 1

' * A *
(19) 4,(0,2,8) = ot q, (1,05 z,8)

e
11+xz+s

* *
(20) q,(9,2,8) = 1,(0,1; 2,8)

Let Rn(ifj,x) be the probability that a busy period lasts for
at-least n tasks, that the n-th task ends not later than time

x and that at the end of the n-th task j = (J,,je) custemers are

waiting 11 units 1 and 2 respectively, given that the service

started with iﬂcustomera, i

‘ 1

(21a) R:.(}be) = Q’l(i’l’x)’ 11 21,

>1, in unit 1 at t=0. Then:
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© ©
, (21b) R2n+l(£’9u’x) = 2:]_ z=o l’: Rzn(i-")\)‘:x'u)
T Ve

. dQl(,Y;-JJu)p n>l,

- il Z l,
(-] [- -]

- (2Le) Rzn(b:bx) = £ I rRan_l(b!‘,x-u)
v1=0 v2=l 0

sz(‘y‘,,bu), n>1, i, 21,

Further let rn(b,l,s) be the L.S.T. of Rn(i,,bx) and

()  rfLme) s T T or(Lye) ol el
:jl=o jz=0 N~~~ 1 2

lzvl <1, v=1,2,

i, 2%,
- so that (21) gives:
(235) rl(i,’i’s) = ql(i.’:i.’s) ’
[- [--}
(2®) 1y, (3,458) = vz_l z_oan(i,,g,s)ql(z,a,p),
1 Voo
n>1, 4, 21,
-] «©
2 -
( 3c) an(L’Lj\.’s) = vz::O \)£=1 rzn_l(£9‘\d’3)Q2(xxi:3);
1 2
n2>1,14, 21,
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(2ha)  r(iz,8) = g (L,2,8) , 1, 21,

* © ®
(2wp)  r, . (4,z,8) = £ I r,(1,v,8)q(vz,8) ,
V=l v,=
n > l, il 2 l’
* ® et
(th) an(i’z’s) = 2-0 4 r2n-l(£’x’s)q2(—\i’»z~’8) ’
M7 Ve
n>l, i, 2 1,

Analogously we Jefine ﬁ'n(£ yd,X) as the probability that
a busy period lasts for at least n tasks, that the n-th task
ends not later than time x and that at the end of the n-th
task by customers are waiting, given that the service started

with i customers, i, > 1, in unit 2 at t=0. Resalling (21):

(25a) ﬁll( »dsx) = Qz(,iv’ j,%), 12 >1,

[--} &
(230) R, . (L,3¥) = T = rﬁzn(bl’!x"“)d%(i’b“) )
v, =0 v,=1"0
1 V2
n>l, 12 >1,
© -]
(25¢) Ry (Lyfx T I rRzn-l(i,"’.."‘"‘)dql(!:b“)
vl=l v2=0 o

n>1, i, 21,
Similar to (23) and (24) we get the recurrence relations of the
~ ~ ~ .
transforms rn('{,bs) and rn('iv,'zv,s) of Rn(bi,x). We see

further that:

- N




i
-] (-] !

' (26) x (1,1,8) = 2=o vi::l qy (L,v,8)r_; (x,4,8),
V17V Ve |

and |

_ . J

(27) r (1,4,8) = 2=1 z, (L, vs8)r, 5 (v,4,8), |

k., The Queue length Process

Let us denote by El(t) and gz(t) the numbers of customers

vho still require some service inunits ] and 2 respectively at

time t. As in Neuts and. Yadin (1968) we further denote:

(28)  m(1,4,t) = B {5 (6)=3,,85(8)=3,

16,(0)-11, 5,(0)=1,}
- and

L (29)  mli,it) = 2{ 5 (0)=3;.5,(0)=,

5,002 550001,

where the subscripts 1 or 2 dezotes that at t the server is in
unit 1 or 2 respectively.

Let for »=1,2, ‘3\-(3., ,1,1:) be the probgbility that at t there
are j = (Jl,jz) customers in units 1 and 2 respectively, that
the queue is never empty in (O,t] and that the original task
has not ended, given that the service started in unit v at t=0

with 1 customers.

ko ooy oGP
JPY Br o da iyt T g e, -

L L STt T R SOt ke

erve A Ottt
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*
Further let wv(ifiﬁg) be the Laplace transform of

¥,(L,4,t) and

. *¥ R ® ® * j 32
(30) wv \i;E)E) = I z wv(igﬁgg)zll Z5
1. =0 Jo=
- Jl 2
) l2 | <1, =152,
Lemma 3.1

%
The transforms wv (i,2,8) of Wv(i’iit) are given by:

(31)

i
it N 2
Vl (L’ﬁ)g) = 22 {( §+kl+xz-)\lzl->\zzz)

.[zl-hl(§+\l+kz'xlzl-x222)] }

°[l'h1( S RN 27 R0, )]
i 41

1
-. {21

kM
[l'zl By (g“'f*z"‘lzl"‘zzz)]

kl-l v-kl kl-v
- T zl[:l-zl r (§+xl+x2-xlzl-x2z2)]
w1 ( )
v .
il 1%, (8 hgzp0)} s 4y 21, -1
ol - g + v g Wz -n (E+), + \,z.,) |
¥y (1,2,8) = 2, {('i Mg A 2y =202, ) 27 (B FAphy 2 M2, ]}
(32) ' [“‘z(‘”1”2“121')‘2’2)]
1-1. -k Kk
2 2 K2
{22 [l-z2 “hz (§+kl+x2-klzl-kzzz)]
k

1
2 vk, K.-v
2"V,
. . o r e )
\:1 zz[l 2, zhz CINEWENEN xzze,:‘

. (v) \
. Zgiz (g+xl-Alzl,O)} » 1, 21,

B S
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Proof:
Ve have:
(33, -l 3 31'“
(i t) ; zl .“td G(r)( -kl(tﬂl) [)\l(t-\I)]
\1’ = uje T
1\Ld, o0 w1 %o LV (3,-v)°
Ja-i
At () ¢ 8
2 2
I e ad RO TR
(34) k-1 3 da7ve
b (5.9.8) g ;2 jtd G(r)( ) -Az(t-u) [xz(t-u)]
= uje ¥
2 r=0 =1 ‘o 2 1pv (32-V2 ’
3,-i
at (nt) L

X [l-Hz(t-u)] )i, 21,
The provabilistic arguments for these are similar to those in
Chapter I. Upon taking transforms in (33) and (34) we obtain:
(35)

(1,2,8) = 2T 1 (5 0y ) (5,2 ,m )
4 (1,2,8) = zzz[ hy (590 hpmh 2y =02,) (60 A0 2 A,

k. -1
é {lg<r)(g+x “NZorZs )= g(r)(g+x “A,2 O)} i,.>1
i 27"2%22%1/71% "M%V R 2 Ny
=0 1 1l
(36)
* i
¥, (i,z,€) = 1[ ol ) ) } ) _ . vl
2 Wi 2,7 10, (50A, 0o 0 2y xzzg (§+x1+x2 Nz Ag2,)
ky=1
T { (r)(g+k “\ 2y ,2Z.,) - g(r)(5+x AL Z 0)}
IR o VR e W 5 Bt A U s S
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The lemma follows now by simplifying (35) and (36) with the

help of (1.8b).

For r=1,2; v=1,2, let ‘”rv(i’l’t) be the probability that
at time t there sre j = (jl,jz) customers in units 1 and 2
respectively, that the queue is never empty in (O,t] and that
the server is serving in unit v, given that the service started
in unit r at t=0 with i customers.
In terms of the functions *v and Rn we have:

o

o o Lt
31 Ay (Lat) = L) s T T ] b (gt
v1=l v2=0 n=l "o

dRy (1,v,u), 1y 21

) © [-) Pt
(38) ¢12(is}l:t) = ¥ P> z L\‘Z(,\L’.‘l’t-u)
~ \,l‘-’O \)2=l n=0 "o

dR2n+]_(£’X’u) > il 2 1,

© o .t

() gypt) s £ E [ (npt)

vl=l ‘)2=0 n=0"0

~

dRZn"'l(i—’er’u)’ iZ >1,
(k0) Ponli,35t) = ¥,(1,4,8) +
@ © » .t -
¢ LT I aylyg,tulaly (),
v1=0 Vo=l n=1"¢

i, »1,
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*
If QEv(E)ng) is the Laplace transform of grv(ill!t)

and
" © © *' jl Ja
(k1) 2. (1,2,€) = 3;‘:0 3:..0 2., (Ll *§)zl z"

2, | <1, r=1,2, 1,2,

then formulae (37) to (40) give:

¥ ** ® e @
(42) M (02,8) = 4 (Lz,8) + T I Er, (i,v,8)
V=1 v,=0 n=1
%
* @1 (y_),%)g) ) 11 >1!
(43) Po(Ln8)= = = mr, (1,04 (y,2,8),
vl=0 v,=1 n=0
i, 21,
X, ® © © - ’ o
(44) Ppn(bLzm8) = L L T o1, (w04 (v3,8),
vl=l v2=0 n=0
i,>1,
H¥ N
(45) Pn(1,2,8) = 4, (4,2,8)
w @ [}
~ *
+ T LT, (4,v,806 (12,8,
vl=0 v2=l n=1
1,21,

*
Denoting by nv(ijl,E) the Laplace transform of “v(iliit)

defined in (28) and (29) and

Rre



© o J J

* N L . *, ., Y e

(46) T, (1,2,€) = jZ=O jz=o “\,(}Jl)")zl 2,
1 2

!zv‘, <1, v=1,2,

we obtain:
Tneorem 3.2

The transforms of the joint distribution of queue lengths
§1(t) and gz(t) and the type of the unit served at t are given
by:
(47)

i i -1
3k ¥
n (12,0 = 7 (152,876, (8)8,7() (5 91,0 0 (£)-1,8,(5)]

i = W R .
O (1,058,8) + 20, (0,152,8)], 1) > 7,
and:
(48)
i i -1

Ty (L,2,8) = Byp(isz, ) + 617(£)8,7(6) (5n +homh 00 (5)-1,0,(6)]

*3% ) ik
(0, 9,2(1,0;2,8) + 2,9,,(0,132,8)] , 1, 21

™
where ¢rv(- ,+,-) are given in (L42) through (45).
Proof:

The result follows from the usual renewal argument given
in Chapter I. For a complete procf we refer to Neuts and

Yandin (1968).
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5. Applicationg

There is a large class of application in which the priority
assignment follows more naturally from the nature of the service
demanded than from the urgency with which the service is needed.
Ir many practicel applications a switch of service from one
class of items to another involves a set up cost or set up
time. The classification of the input items according to
similarity of service requirements is hence desirable. The
alternating priority model was first discussed by Avi-Itzhak,
Maxwell and Mille» (1965). They considered the alternating
priority model with zero switching. The model wz considered
in Chapter III is the non-zero switching case which is a
generalization to zero-switch. Although the analysis of the
non-zero switching model is very complicated, it is more
practical. In the case of a device controlling traffic at an
intersection the zero switch rule sllows one stream of vehicles
access to the intergection as long as there are vehicles in
this stream and a steady input of vehicles in this stream
delays other streams indefinitely. A compromise rule is to
allow a certain number kl of vehicles of one stream access
te the intersection and then that stream is stopped and - -
to allow a certain number kz from another stream, etc. The

optimum numbers k, and kz may then depend on traffic conditions.

1
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CHAPTER IV
A PRIORITY RULE BASED ON THE
RANKING OF THE SERVICE TIMES FOR

THE M|G |1 QUEUE

1. Concepte and Definitions

This chapter presents mainly the content of the article
by Nair and Neuts (1969). Here we propose & priority rule
based on the length of service demanded by a customer.
Takacs (196Y4) discussed a priority queue based on the rankings
of the service times of the customers and obtained the
gsymptotic moments of the virtual waiting time assuming that
a customer with a shorter service time has priority over a
customer with longer service time. Here we consider a
different, but related problem.

We first recall a branching process description of the
Ml |1 queue suggested by Kendsll (1951) and investigated by
Neuts (1969). Suppose that at time t=0 there are i >1
customers in the queue and that one of them is just entering
service at that time. These customers form the first
generation and their total service time is the lifetime

of the first generation. Customers arriving during the
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lifetime of the first generation, if any, make up the second
generation, with its lifetime, and so on. If at the end of
the first or a subsequent generation's iiretime there are no
customers in the queve, then there is an idle period at tha
end of which a customer arrives who makes up the first generation
of a busy period.

It is clear that the life time of a generation does not
depend on the order in which customers have been served dur-

ing it. We will study the virtual waiting time for the M|Gll

queue under the assumption that within each generation customers

are served in the order of shortest (or longest) service times.

We will call these policies thc shortest processing time (SPT)
and the longest processing time (LPT) disciplines, respectively,
and compare them to the first-come, first-served (FCFS)
discipline., Once the rearrangement is achieved within a
generation, the incoming customers thereafter do not upset

it; hence the question of service preemption does not arise

here.

2. The Basic Imbedded Semi-Markov Precess

We assume that at t=0 there are i > O customers in the
queue and that the one with shortest service time enters
service immediately. A sequence of random variables

TO,T is defined as follows: T0 = 0 and Tn ig the time

1,..-.

at which all custcmers, if any, present at Tn- complete

1

gervice; if there are no customers at Tn-l’ then Tn is the

O R—
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time ot which the first customer who arrives after Tn-l

completes service, That is, Tn is the time of sarvice completion

of n-th generation, if the n-th generation is not empty. On the

other-hand, if the n-vh generation is empty, then Tn is the %ime

'é - of service completion of the first customer who initiates the

| first busy period after time Tn-l'
Let §(t) denote the number of customers in the system,

at time t+0, who still require some service. Then the

bivariate sequence of random variables:

(1) {g(,)> T, - 7,5 n >0}

is & Semi-Markov sequence.

We define the taboo probabilities:
(o), y .
(2 &6 =8y U,
- and
: &0 = pfn) <x, 8(n)=0,5(T540,v0,2, 0l
1g%ﬁﬂ,n31

3. The Virtual Waiting time Process

Consider an M|G|L queue that has a Poisson input with

parameter X\ and a crntinuous service-time distribution function

H(:) with finite mean . We denote by T(t,x) the waiting time
of a virtual customer arriving at t whose service time is
x > 0, where the Mk)\l queue observes an SFT discipline, and

?Kt,x) the corresponding virtual waiting time in an MlG\l

o e - - . o . SRS e Dl e et T L S i e 4 7 A e =

RS

..,,.....‘.....,.,.....___,.
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queue with an LPT discipline. Let

(3) Wy (t,x,y) = {0 < Xe,x) <y | 4(0) = 1},

() 8 (t,x,3) = P{o < N(t,x) <y, Aryx) 40

for all 1€(0,t] | &(0) = 1}

Then as in (1.61) we have:

t
(5) Wy (t,x,y) = A (t,1,y) + foAlct-r,x,w am, ()

+ 2{1(t,%) = 0 | 5(0) = 1} u(y)

* *
Let Wi(t,x,s) and Ai(t,x,s) respectively be the L.S.T. of
Wi(t,x,y) and Ai(t,x,y) with respect to the variable y and
** P
let W, (¢,x,8) and A (&,x,8) respectively be the Laplace
* *
transforms of Wi(t,x,s) and Ai(t,x,s) with respect to t.

Further we denote:

(6) Ae) = M8 sr0 <z cx,

O othervise,

and hi(s), h(s), oqi?)(s) the L.5.T. of H(+), A(.) and oQg‘)(.)

respectively, and

M M, - = AV, k)<,

9 il b s e Wi

S
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Lemma ht;

. **
For R(p) > O and R(§) > O, the transform Ay (&,x,8) of
Ai(t,x,y) is given by:

@) KM(ewn) = g £ [nhen) - riga]

58 =0
where:

(9) 2z = n{sam(x)-R(s)1}, 2° = W{EM(0) R0}

and
(10) bo(g:z) =2, hn<§’z) = h[‘%”')\'khn_l(g,z)] y 121,

Proof:
We have:

(1)

o, - ® o (ve v v
"1‘“"’”’]]& £ £ & dQ(n)(“) A(v-u) Lﬁ.,_l.l’* -

(u)(v) n=0 j=1 v=0 1]

z( ) B0 ()1 HE yeven)a g ()

where H(-) is defined in (6), H( ) ) and H "("‘)(-) are the m-
fold convolutions of H(-) and H(+). The probabilistic
argurment to get (11) is the fcllowing: If the queue has

never become empty in (O,t], let the last beginning cf the life
of a generation occur between u and u+du and let there be j
individuals in that generation. Let the end of the life time

of that generation be between v and v+dv (v > t). 1In the
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interval (u,v), v > 0 customers arrive, and they have priority
over the virtual customer if and only if their service time
does not exceed x. If there are x such customers, 0 <k <,
then the distribution of their total service time is ﬁﬁk)(-).
The formula (11) is obtained by using the independence
properties (.4 summing cver all allowable values of n, j,

v, k, uand v,

Taking the transforms of (11):

(12)
* ¢ " S 2 (n),.-(v-u){eeNH(x) [(1-B1
Ai(t,x,s) = L It nfo gfldoq‘i? (e "V u){s x (s)1}
(u){v)
- a, 1) ()
(13)
A:*( §,x,8) = -é_‘; z 3;1 oqﬁ;)(g) {:t‘j (o+i(x)(1-h1s))]
n= =

- 0 [gai(x) (1-R(s))1}

t1 8

D S ) (M) e oy
B E-_;n 0 {OQin (6,2) - oqbn (&2,

where Z and Z' are defined in (9).

Now the lemma follows from lemma 1 in Appendi C.

ETI DENEESEEAGR TS S it

© < -
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Thearem 4.1
*
Foer R(s) > O and R(%) > O the iransform W (&,x,8)
of the distribution functien of the virtusl waiting tiie

7(t,x) is giver by:

*% 1 o i, .1
W) W (sme) =gy £ [n(6) - n(ee)]

I @
Y L% A o \or (g
M w7 Gl ey Eo[hn(ﬁ,u, n(52)] }
whe.e 2 and Z' are given by (9) and h“(.,.) vy (10).
Proef:

Taking the transform of (5, .2 get, &s in Theerem 1.2,

that:

Al
. . Yo % **
(15) W:*(gsxss) = A:*(E,X,S) + §+k-)\§ Z [}-+7\A1 (§9xss)]

The theorem now . llows frem lemma 4.1,

Limiting Behavior of Virtual Waiting time Precess

Let W(x,y) = lim Wi(t,x,y). The existence of this
t 4w
niting distribution can be demonstrated as in Thecrem 1.3.

Theorem b.2
The L.S.T. &(x,s) of the limiting distribution ¥(x,y) of

the virtual waitirg time T7(t,~) 1s given by:

-

(16) olx,8) = (1-a{1 - 2 xn (0,2)-n (08)] ), if 1M > 0,
=0~

n

= ) othervise,




where hn("') are given by (10) and

(17) z = h s+kH(x)[l-ﬁYS)]} , Z=n {AH(x) [l-ﬁls)] }
Proof:

Similar to the proof of Theorem 1.3. As in (1.65) we

obtain:

(18) o(x,s)

(1-Aa) [L + A AI*(O,x,s)] if 1-h @ >0

0 otherwise,
Substitution of lemma 4.1 in (18) proves the theorem.

Taking the limit as s = O+ in (16) we observe that
o(x,0+) = 1.

The Moments of the Limiting Distribution

We use the following notation:

@

B = Io u® aH(u) ,

Y = j u3 dH(u),
o]

x
a = XO u dH(u) ,

jx 2
B, = | u aH(uw),

0

Y, = Xx u3 dd(u) ,

(o]

~

(19) ] (X,S) = hn(O,Z) - hn(O,Z) ’
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where 2 and Z are given in (17).

In terms of the functions % formula (16) yields:

® Y (X,S)
20 ,8) = (1- 1 -2 Lt ,
(20) w(x,s) = (1-a) { I3 }

[ <]

Br lemma 3 in Appendix C the series I @n(x,s) is dominated
n=1

by a convergent series if 1-A o > 0. Hence by Lebesgue

dominated convergence theorem, term by term differentiation

gives:

5  sy!(x,8) - ¥ (x,3)
(21) ~ == w(x,3) | = M1l-Mx) E
%8 =0 n=0 sz ]s=0

Applying 1'Hopital's rule twice we get:
d A(1- >

(22) - % alxe)] =203 5 o)
% s=0 e n=0 "

where the number of primes denotes the number of derivatives

taken in succession with respect to s. Similarly:
2 . ®
w(x,s) A(L- ,
(23) O wx,s ] = - -(_1_)‘_.0.1 T $(x,0)
2 3 n
98 8=0 n=0
From (19) we have for n > O,
(24)

0 = 02 2) @)

8=0

[¢¥%
)

(]

o/

0N
[V—

+ h;(o,l)[

o

Qo
[
Q/
[

.




s

poicmiynetiv (AR
I TR R T

—— — oy t—

Further it follows from (17) that:

&z
— =-aq(l+roa)

o8 =0 x! ?

32
< =-7\aa,
bss=o X

2

2

§~% = (L + A aﬁ) +haBy

3s “s=0

2~
ds “s=0
¥ L y(1+da )3 - pp (1+ha.) - M ¥
NEE NP b ABP, (Lrhay x '’
v} - w e - haY,
ds” "8=0

Substituting these calculations in (24) and (25) and susming

over n with the help of lemma 2 in Appendic C we obtain:

0 0 - el 22
2 £ ¢"(x,0) = :
( po (1-2a) (1-2%°)

and
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(27) £ §(x,0) = ——= {ms » (1%
n=0 (1- Nﬂ)(

- (130 158 V(1% ) e %)

Let MB(X) and VB(X) denote respectively the first and second
moments of the limiting distribution of 7(t,x). Substitution

of (26) and (27) into (22) and (23) respectively leads to:

(28) ) = )\a(1+2)\a)
2
Mn " 2(1 - \% a )
and
-1 22
(29) Vifx) = ;z;-zg;g- {}KBB + (1- X o ) (l+3kax + 3x ax)

. {Y(l-h2a2)+3l%z 32} }

L. The Longest Processing Time Discipline

In the longest processing time (LPT) discipline, within
each generation the customers are ordered according to their
length of service times, with highest priority going to the
customer with longest service time. The virtusl saiting time
process of the present case can be treated as in the case of SFT
discipline. As we have denoted T(t,x) is the virtual waiting
time of & customer arriving at t whose service time is x > 0
in the case of LPT discipline. The Laplace-Stieltjes transform
of the limiting distribution of ﬁ(t,x) can be obtained as in

(16):




e e
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T [hn(O,C) - hn(o,g)] , for 1-)a > 0,

30 1-da){l -
(30)  @-a) z

A

En

where

(31) ¢ =nls + \[L-H(0)] L - A(s)])
T=n001 - H(x)] [0 - Rs)1Y

h(-) is the Laplace-Stieltjes transform of ﬁ?~)

and

L

(32) H(z)

, ifz > x

1]

O otherwise ,
The first and second moments of the limiting distribution of
T(t,x) are obtained from (30) as:

(L + 22 a:)

(33) M=(x) =
n 2(1 - 2% az)
and
2
A * 3 3,-1 * 2%
(34) v=(x) = — M.+ (1-2"27) (A4 +30\ e, )
w 3(1-2%5) { X x o
[van%d) + 5] )
where

5. Comparison of the SFT, LPT and FCFS Disciplines

Let TN(t) be the virtual waiting time of a customer arriving
at t in an M|G ]l queue with FCFS discipline and let My be the

mean of the limiting distribution of N{t). Then it is known that:
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(35) M'T\:-ZTI_t\i%;’

From (28), (33) and (35) we observe an interesting relation-

ship among M,n(x), M-,ﬁ(x) and M.n:

(36) oy = § [yl + w0
Also,
(37) MIJ(X) 5M,n 5Mﬁ(x) if and only if o 5% s

Again, MJ](X) and M—ﬁ(x) are random variables with respect to X,
which has a distribution function H(-). If we denote by E,

the expectation with respect to the random variable X, then:

o«

E M (x) = j M. (x) dH(x)

3 o 3
(38) = -———Q——- [1 + 2hg-= 2\ ru H(u) dH(u\]
2(1-7\ a o
and
(39) E, Mp(X) = [1 + zxj 4 H(u) du(u)]

lka)

In particular if H(x) = 1 - e %, x > 0, then:

(40) B, My(x) = 2(2sp)

' () E () - 22
and

‘ (b2) i T {)-p ’
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where p is the traffic intensity % . Hence in the case of an
MM|L queue:
(43) B, Mp(X) <My <E, M5(X)

FPurther examination reveals that:

+ 2\ a
W oG .
That is, the steady state expected virtual waiting time under
SPT rule is obtained from the steady state expected virtual
waiting time under FCFS rule by multiplying with the factor
(1 + 2x ax)l (1+ M) which increases monotonically from
1/(1 +Aa) for x = O to (1 +2\x)/(1 + \a) for x = =, The
factor (1 + 2x )/(1 + ) >1/(1 + ha) >%— , since \x <1

by the steady state condition. Hence:
M, (x) >3 for all x >0
5% >3 2

and Mﬂ(x) ! -]2= MT\ as A t 1 and for small x. Again,

, 1+2)¢ e . 3
\1+27\ax)/(l+)\a) < (m&—) = 2 - 1/(1+xx) < § which implies

that:
Y o2 .
MB(x, <3 MT\ for all x > 0,
and MB(X) t %Mﬂ as \x ' 1 ana for lsrge x Thus;

(k5)  Fw

Similarly we observe:
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: l+2A a:
(46) Mo(x) = (7555 M o

If we draw the graphs of y = Mv(x) and y = M—T‘(x), then it
_J i
is easily seen that they are symmetrically situated on either

B side of the line y = M,n Hence whenever M.n(x) satisfies

Ya 1224% e e
I‘/"\%\ /;
.- }

]
|
M '
Yz 1 \
|
i
L]
- i
!
LA M N
« e RE SRR
. f
i 1 e i ;'Ja(,\
o i»'\-‘( Ax
Figure 3.

The Comparisor Graph
the inequality (45) M,ﬁ(x) also satisfies the same inequality
but realizes in the reverse direction. They are concurrent

with M“ when a, = %. This irs graphically shown in Figure 3.
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6. A Renewal Argument

Equation (11) can be written as:

(47)
t e t-uty . © v
W) ={(3) -z (A
A (8,%,y) = Iojfi onij(au)xt_u e () E 2 (a2)”
r () 00 o8 () 1 T (ay-u-z)
k=0

which is obtained by replacing v-u by z in (11) and defining

+ olm) ey . .
nfg oqij (t) = oRij(t). ORij(t) is the expected number of times
state j is entered without visiting the state zero in [0,t],

starting at state i. Defining:
(48)

t-uty © v v

P, (tu,x,y) = 1 (az) £ Q2 5 (V) g(y)

3 v k
t-u =0 . ° k=0

- w0 ] 5 e

we rewrite (47) as:

t =
(49) A (tix.y) jo LR () Fyleuny)

(49) together with (5) gives:

t (=]
j £ R, (du)F,(t-u,x,y)
0 g1 OM T

"

(50) W (6,%,y)

+

t
(t‘T;X,Y) dl (.T)
I n 4

4

P{N(t,x) = 0 | &) = 1} u(y)




By Smith's Key Renewal Theorem (Theorem 4, Appendix D) and

lemma 1.8;

(51) W(x,y)

lim wi(t,x,y)

t =

x

- 3

-]

@
X L Fj(f,x,y)d1 + X I Al(T,x,y)dt
o j=1 0? L

+ (1-n2) Uly) , if l-Aa >0,

0 otherwise

where ¥ is the mean recurrence time of state j without

J
visiting state O and u is the mean renewal time cof the genersl

renewal process formed by the beginning of busy periods.

From (1.52) and (2.86):

f f Ou-l = 0and ut = A(1-Ma)
- j

Hence further simplification of (51) gives:

(52)
W(xy) = oy £ R )] F Gy at)
J=1 o Y
if 1-xaa > C,

O otherwise,
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7. An Exact Comparison of the Waiting times

Under Three Priority Rules

A number of comperiscr.s between SPT, LFT and FCFS rules
were carried out in the earlier sections in regards to expected
waiting times in the equilibrium state. Many questions which
involve more than expected values may be asked however and in

order to answer tiiem en exact comparison of the waiting times

a8 random variables needs to be made.

We may "visualize" the definition of the three random
variables T(t,x), T(t,x), T(t) on & common probability space
as follows. Imagine that a customer joining the queue at time
t consists of three identical parts 1, 2, 3 all requiring a
processing time x > 0. Part 1 waits in front of a server operating
under the SPT rule, part 2 in front of a server operating under
the LPT rule and finally part 3 waitrs in front of a unit governed
by the FCFS rule. Then J|(t,x), Ti(t ) and T(t) are the waiting

times of parts 1, 2 and 3 respect :ly.

Ar. Auxiliary Calculetion
Consider the time points t and t+t’, t >0, t' >0, The
probability that during the interval t, jl customers arrive
whose service time is less than x, 32 vhose service time is

greater tian x and that during (t,t+t‘) j, anu j, arri-c with

service times respectively less and greater than x is given by:
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3
P _L)\;H,Lx)] Lo
1

J J
"H(x)] 3 {kt]laﬂstI} 2
s ! }
33. ,jz.
J
oI [-H(x) 1) 4
Jy

We assume that x s a moint of continuily of H(:) so thet
the probability that one or more customers have service time
exactly equal to x is zero.

Let U{ and Ué be the total service time of all customers

in (0,t) with service time respectively less and greater than x.

’

3
customers arriving in (t.t+t’),

Similarly U, and Uﬁ are th2 corresponding quantities for the

We define W(t,t’ ; xl,xz,x3,xh) as the probability that
for given t > O and t’ > 0, the rardom variables U/, Ué, ul,
Ug satisfy:

[

’ 4 I

It follows from (53) that:

‘ S22 et
(51‘) W(t,t ;xl’x?;’x3’x’+) = I L T E e
-jl=o 32=O J‘i=o Ju-o

3 3

il W)t )3 Delerp1)
30 T T,
1 3 2

, W (3)) L35) ), )
(e[ LY 2 )
A j:.'{(x):“ q (xl)}{ 3(x3)§( (x?)ﬂ’ (xu)




whers T and f are defined in (6) and (32) respectively. Upon

taking Laplace-Stieltjes transforms:

@ o o ® «8 X ~5.X,-8.X.~6,X
(55) W' (8,8758),8,,55,8,) = [P evreesss 4
‘0 "o Yo ‘o
’ dxl""’xh w(t’t';x15¥2,x3’xu)

we obtain:

(<] -] @ -]
* . _=At-at’
(56) W'(tst';8),850858,) = £ £z & e N
Jl=0 32=0 J3=O Jh=0

J ’ J 52 ¢ jh
DerG)T Y De'E(x)] 3 Defi-nx)]) 2 e f-nix
jlfl 3_3: 32'- %‘.S'_).L

B2y 8 o) B 20,00 ,)

= exp{- At-At '+mn(x)‘6'(sl)+xt [1-H(x)3ﬁ'(s2)
+ A6 HOR(s )t [L-0x) (s, )}

We now return te an M]G!l queue, which we consider at time
t. We define the following five randcm varialles. Uo is
the length of time bevond t until the generatior of customers
in service at tire t completes its serrice. U

1l
respectively the total service times of the customers with

end U2 are

processing tires less than and greater than x who have joined
the queue since the beginning of the service time of the current

generation and before t. U3 and U, are respectively the total




e o

e

service times of the customers with procesging times less

than and greater than x, who joir the queue during the time
interval (t,t+U0) .

If at time t the server is idle all the five variables
are zero,

We shall express the joint distribution of the waiting

times T(t,x), T(t,x) and N(t) in terms of the joint distribution

of the random variables Uj, 320,004 lb,

The Joint Distribution of US’ 320,44, 4
Let oRi(‘l:,xo,xl,xz,x3,xu’) be the probatility that in
(0,t) the queue has never vecome empty and that the variable
UJ, Jj=0,...,4 associated with the time point t satisfy
U

5 <x 52 J=0,...,4, given that at t=O there were i > 1 c.stomerc

in the queue, one of who was veginning his service at that time.

Then: R
@ e« o)
(57) oRi(t’xo’xl’xa’x3’x’+) = nfo \:l jo jo doqir\:)(f)
(t") (v)

¢ i (get 'on)

W1, 5 1 ,%0,%, )

The probebilistic argument for this is the following: At
some time 7 prior to t, the generation in service at t enters
service. There are some number v > 1 customers in it, so

that the duration of the total service time of these v customers




has as its distribution the v-fold convolution H(“)(—) of H(-).
If Uo < X, must hold, then the total service time of these v

customers cannot exceed t+x . The other requirements Uy £%,,

Up < %55 U3 < X3, Uy <x, account for the factor W(t-1;
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3%, yX,,%45%, ). The probabilities (n){.) are defined by (2).
17227327y o4v

Taking L.8.T. of (57):

9 e )= oS T

© 0 0o o0 ©

e-soxo-slxl-szxz-s3x3-suxh

o’xl’x‘-"x3’xu ORl(t X ,xl,x?’x3’xu)

and recalling (56), we obtain:
(59)

oRL (64508,,5,,83,8,) = z Ov;zloqf'\j)(g)j j exp{- 8,28,
(t,)(x,)

-Mx, 8 % At HOx)B (s, Yt [L-d(x) 16s,)

+ R HOOR(8 ) ax, -0 W) Jan(¥) e ax Dat,
o~ "'1
= {g0,-Mi(x) (T8, -Ble ) 1A -H(x) 1 (s, )-Bls )1}

z{pqi ) b 0nes oMK ) -2 (1-(x) (s, ))

n=0

A e hLE A (x5, )-A (LK (x) s 2§




in terms of the functions oqgn)(g‘,z) defined in (7).
Next, let Ri(t’xo’xl’XZ’xyxh) be the probability that
at time t, the random variasbles U, associated with t satisfy

J
UJ 5xj, j=0,1,2,3,4, given that at t=0 there were i customers

in the queue,
The standard regeneration argument as in (1.30) leads to:
(60) Ri(t’xo,x19x2’x3,xh) = oRi(t’xo’xl’XZ’xyxh)
t
+ Io oRl(t-u,xo,xl,xz,x3,xh) dMl(u)

+ 2{s(t)=0 | g(0)=1} UCEIR NN
where:

U(xl’XZ’x3’xl&) =1 iij Z 0 for all J:l,2,3,h

= O otlherwise.

- Upon taking transforms in (60) we obtain as in (15):

£2.2 L2
(61) Ri (g)301'1,52n3353k) = ORi (g’so’sl’82’53’sh)

+ V(O LEAAV(E) )T A Ry (5,5,,61,85083,8,))

When l-)\a > O, the existence of a joint limiting distribution

for UJ, §=0,1,2,3,4 is guaranteed as in Theorem 1.3. Further
when l-\x <0, Ri(t,xo,xl,xz,xB,xh) tends to raro for all i and
Xy 2 0, J=0,...,4. Since the limiting distribution exists when

r , 1-)a > 0, its tranaform is given by:
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k2
‘ (62) R*(so>sl:32s53»5u) = gli?0¥§ Ri (5:30’31)52’53,5u)

r e 1
= (1-Mx) i}+k & (°+’“°’31’32’33’°u)j

The Joint Distribution of T{t,x), N(t) amd T(t,x)
The random variables T(t,x), ﬂ(t,x) and 1(t) ave, for each
t > 0, related to the random variables U&, j=0,1,2,3,k

associated with the time instant t by:

(63) T(t,x) = U, *Up + Ug

M(t) =y, + U + U,

T(t,x) = U, + U, + U,

l That thds is indeed so, we argue for T(t,x). The other cases
are similar. Consider a virtual customer with service time x
arriving at time t. He has to wajt until all customers of the
present generation, if any, have been served. This 1z a length
of time Uo' Next, in the next generation, all customers with
service time less than x are served ahead of him. Regardless

1 of the actual order of service the total amount of processing
time required by all customers with service time less than x
is U1 + U3. U, is the processing time of those who preceded

1

him and U3 that of those who succeeded him in the arrival

gequence, We have:

v
i
|
H
H
H

e i e SRR, Na W T A A T S
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(64)  I(t,x) ¢ + L) ¢, + tx) ¢

o (67G5ry) UL+ (640) Uy + (65463) U,

* QU330

which implies that:

- -T(t,x) 6 =M(8) 6p-Ti(8,x) €
(65) 8 (GGt = [ e e T (e 3 at

0

Ry (6 6+ €530 §+60 E# 63 6y )

-

vhere R, (*;5°,°5",+) is given by (61). Formula (65) shows
how the joint distribution of 7(t,x), N(t) and T(t,x) is
relatel to the basic parameters of the MIG |1 queue,

The Limiting Joint Distribution. The Limiting jeint distribution

of the th .ee virtusl waiting times is given by its Laplace-

Stielejes transform;
(66)
S*(Cl’C2)C3) = (l-h){l"’)\ OR;-*(O,QL+C2+€3’%+QZ)C2+C31gl’C3)}

#-
where ORl (',',"'g',‘) is giVEn by (S?)'

Moments of the Lisiting Distribution of Basic
Variables UJ, j=0,1,2,3,4,

Let us denote:

g (30,31,32,33,ah), 0 = (¢,0,0,0,0)




(67)

(68)

(69)
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6 =6(x,8)

S + MI(x) (e, )-s ) A [1-1(x) ) (s ) B, )]

Y = ¥(x,8) |

(i, 2 (x)0(m.)-A(1-H(x) (s, )]
= %(x,8)

DM ()3, - (1-1(x) (s,

n

<
\

\'ing &"n(xsg)

= hn(O,Y) - hn(o:?)g n>0,

vhere the functions hn(',-), n > O are defined in (10), It

followe from (62) that:

(70)

Let E U denote the expected value of the limiting distridution

of the variable U, and U the column vector:

(11)

= 5 - (1-&:){1 . b’:Eo[oqin)(o,r)-oq§n)(o,ﬂ] }

® \"(X’E)
= (L) {1 -y g 22X
RN

(similar to equation (20))

b L=
]
o

TR L gl L aR ek Sy Semenema 0 - =

{
!.
i
1
f




*,.J
o
[a%]

8ince the calculations are lengthy we state the results cnly.
The matrices of first and second moments are respuctively

given by:

@ ny-Ca¥] )

= : L * * i
. 2axb AV aa b ANa b +\8.a |
. 2 2 l
! A2 A * 2 '
A a, b 3, b = oa, b A a:b + 38 |
' 2 2 2 2 : '
. * A » A 2 * 2 # *
L Ao, b Faa b - Q, b Va ab Ma b+>.axa i

| ) ;

—— —— -

* * .
where Qo Bx, as ax are defined insection 3 and section % and:

a=E U = xa/?(l»xzaz) ’ ‘
b= £ U2« ) (-0 Tt %),

B s S e i Y W i L e
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That is, a is the steady state expected residual life length

of the generation serving at time t and b-az its variance.

Moments of the Limiting Distribution of

At,x), N(t) and Ti(t,x)

Let us denote:

‘3(t,x)‘ ‘1101 0

= |

A S ‘T‘(t) ! A= 11100;
Lo ’ _.
F‘n(t,x) 'L 01 01

8o that from (63):

A=Ay
(T4) E A= A(E_U)
(75) ES(AA) = A(E_ L u") a’

E,Yand E_U U’ are given by (72) and (73), and sutstituting

these values in (74) and (75) and simplifying we obtain:
(1+2qu) £

(16) E A= C(1n) e

(142h]) o
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—— = = B ]

i
| 22 ‘
i b(1+3)\ax+3>\ ax)
(1) '
; + zxax e
a3 2 2
ES(M")=, b1+ 3ot 52 b(1+ra+ ‘@
+ % )‘zoux)usxa + AP a |

t
[
|
!
i
|

2
; 2 * A 3 * * 2 *
b(1+ 5 Aa+3h axax) b(1+ 5 a+ 5 M, b(l+3ka&+3k o, )
2 % * *
‘ +-§-)\aax)+xsxa + Zhaxa

!

The Limiting Probability
P{N(t,x) <N(t)}ast > =
Let [\i(t,xa,x3) be the joint distribution of U, and U3

given t and o1\:]_(1:,}(2,3:3) be the probability that in (O,t) the
queue hes never become empty and that the variables 02 and U3
associated with the time point t satisfy Uz < Xp s U3 < x3,
given that at t=0 there were i > 1 customers in the queue, one
of who was beginning hitc service at that time. Then the

renevwal argument as in (5) leads to:

¢
(78) A (taxgoxg) = A (¥,x55x,) + Iol\l(t-u.xz,x3)dMl(u)
o
+ PlE(t)=0 | 1(0)=1} Ulx,,x,)
where:
U(xz,x3) =1 ifxzzoande_zO ,

= 0 otherwise

CT s o AT R M T S I i s G St BAT I s e et e Lol 1L S o Y At e 4 ek e
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Further let g(t,t’; xz,xs) be the joint distribution of U, and

U given t end t’, then as in (54);

s o-M(L1-H(x))-At 'H(x)

jz 0 j3=0

J J
. ]kt]l-h’!’x} 1} _2_ [M:'fo“ 3 g(Jz)(x )§(33)
jz. 33! 2

(79) a(t,t"5x,55x,) =

[ e I

(xg)

Similar to (57) we have:

© © © t

nfo vfl jo jo

(t") (1)

(80) oy (8515,1,) 2,8 (x)a(V) (4t -1

. ﬂ(t-?,t';xz,x3)

o t
V=4 O

where C,Ri\)(~) is defined in section 6 and:

(81) Fv(t-f,xz,x3) = jo du(“)(t+t'-1) #t-t,t " x

(')

Substituting (80) in (78) and applying Smith's Key Renewal

2:x3)

Theorem (Theorem 4, Appendix D) we get the limiting distribution
A(xz,xB) of Ai(t,xa,x3) as t9 =, as in (52):
(82)
[+=] (o]
= - 14
A(xa,x3) (1 )\a){U\xz,x3) + A El ORIJ(+m)XoFJ(r,x2,x3)d'r} ,

ifl-\ag>0

J

= 0 otherwise

e et e 41 i
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From (63) it follows that:

(83) 2im P{T(t,x) < W(t)} = m p{’3 <V2]
t s t v

- |

X

2
I 4 A(xa,x3)
o'

© ) xz )
= (I-M){lﬂ‘jfl oRLJ (4=) I o j o .y o dxzx3FJ (x ,xz,x3)d7}
(xg1(x3)(7)

8. Applications

The wain objectives of a priority decision are to reduce
the response time, to ackncwledge customer importance and urgency
of request and to serve in fair order and to limit the length of
wait., TFor the best average performance the shortest service- i
time-next rule may be just rigr . But under this rule a steady
stream of shortest requests may delay a longest request indefinitely.
The rul~ prcpos<d in tiis chapter is a compromise to this, since
within each generation thz service request of a customer with

loug service Lime is DGfilled. Our model, of course, assumes

that the service times of the customers cen be ordered before

e

hand.
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AFPENDIX A

A THEOREM ON SUMMATIOW OF SERIES

Thecrem
For a given positive integer k, the sum of the
series:
a+y N v k_
W ; . [-E-]k 1 k-él um(iml) (y™=1) ewmxy
nr ¥ k . k-1
n=0 =0 (v ny-l) Y

for all x, for all yfl, and for all integral values
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infinite

of v>0,

where [‘5:-] is the greatest integer not exceeding in_ , and

ls wo’uﬁ."""i-l are the k-th roots of unity.
Proof':
Let us denote;

© n (w]k

(2) f(xsy) = 'J'tn'l' y “
n=0 °
and
3 Hew) = | o txy) &
Then: ° .
o

4 t(s, -
(4) t(s,y) nfoy—.;q-

Guppose that O <y < k-1, then (i) can be written as:
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Key-1 ZR-V']. 3k-v-1
- k l 2k 1
f(ay)= T ==—+y +y ) —g
n=0 .n+1 nzk- a!n * n=2key ‘n-*

e x,:_ c

P W w0 ]
k-\h. 1) \)(’ l)(sk k)

(s) ——-—1’-——1—1-°k*‘vk1'k
(s-1) (s%-y*)

Next we consider r k < v < (r+l) k-1, r=0,1,2,...

-

Hoy) = B
£(s,y) A x;;:r

(e {ET)
L.

.n+l

[ﬂ"’l‘ ]k

(5) 'Yrk ; y‘—n:,_T-

[4

where r’ = y - rk and Ofr'sk-l

Hence substitution of (5) in (€) ylields:

Hary) I kel n 1% -1) - ¥
(s-1) (" - ¥°)

(7) L g .\)'!'EQ 4.)‘.—1-1

(® - 1) ("

n’;lxn(a'g)‘& @ .0

, for ly| < |8},

In this case:

for Yyl < ls,




To find the inverse trarsform we use Bateman (1954), Tables

of Integral Transforms (p232).
That is, if £(8) = %-?:-} ’

<

14k

vhere P(s) = (s-al) ...(s-an), o # a, for 1 #r and Q(s)

is a polynomial of degree < n-l, then the inverse transform

of £(s) is given by:

Qo) ax
8 = nm
® e E oy

where P (a) J'a—i'
Comparing with this we have in (7):
B(s) = (s-1) (s - ¥¥)

= (81) (s-wy) (s-wy) --- (s-q _,¥)

80 'Gh&t al = l’ %‘.2 = uhy, lFO,l,...,k-l

ay ;‘ aJ for i;l,j since y'/l by asgumption. Where Waysece

are the roots of zk «1=0

Qs) =y k[ + 8V TE(yE ) vk]

Pu(s) - KB-lg (== - )

- am

Pl(al) =1- Yk

Poee(Gpyg) = (4¥-1) Yk'l(w -0 M ‘"‘1\'
(CRENERICK coe (B=g 1)

k k-
2 E); (UJ‘l)y l, ’o’lgton,k‘l

%1
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where the simplificatinn is obtained from the properties of
the roots of the equation zk -1=0.

Qo) =0

Qlay,p) = (wmy)" (y5-1), m0,1,... ,k-1.

Hence using (8) the inverse transform f(x,y) of £(s,y) 1s
given vby:

k+l Qo) o X
f(x,y) = L -P:%n;;)- e B

m=l "m

k;l c:m(wmy)v (yk-l) W Xy
e
20 (wy-1) vt

22 Ead

This is independent of r and hence the result is true for all

v>0.

W i e
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APPENDIX B
PROPERTIES OF THE TABOO PRUBABILITIES
OQS)(') FOR THE TANDEM QUEUE WITH ZERO
SWITCHING

(The results and proofs of this appendix closely follow Neuts (1969))

Starting with the semi-Markov sequence {gn,Tn, n > 0}

defined in (1.3) we define the taboo probabilities oqig)(‘)

&8
&) = 84 Ulx)

1

(1) c,Q,(LJ)(x) = Q) = Plg = 4y T <x | § ) = 1)

oQ:E?)(X) = P{T1+...*Tn Xy 5= g\fo,wl,...,n—llgod}

n>1,
Let (n)(ﬂ be the L.S.T of (r’)"*) and

e Oqu D OQi,] R

(2) oqin)(s,z') = JEO oq§§)(8) zJ , lz| <1,

Turther we dencte:

® @z aYe e




1h7
W) mes(®) =y oy (®)

It is seen that:

(5) Jfl omij(s) 29 = n::l oq;n)(s,z) - oqin)(s,o)]

We define the following sequence of functions:

ao(s,z) =z

(6)
an(s,z) = Vl{s,hz[s+k-Xan_l(s,z)]} yn>1,

where Y, (+,.) is defined in (1.12).

Throughout this appendix we use the follewing nocations:

’ 9
an(o,l) =35 an(O,z)]z=l

» 32
an(O,l) = ;5 &n(o,z)]”l
v/(0,1) = & ¥ (0,z)

) R oz 1‘'7? -1

2

o)
v'(0,1) = S v (o,z)]z
A 1

Lemma 1
If 1-) o - A az > 0 then:
@ \a
2
(1 T a/(0,1) =
sl ° 1-2oy - Ao

and

N DA s A B e Tl - e e T -

0 e
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© A 24 =1
® = s - a0 - o )
a, ° A
{('1-.'51‘) By + By * 2 (T?xgl') % a)

Precof:

From (6) we obtain:

a,(0,1) = A o, ¥/(0,1) ar;_l(o,l) ,n>1,

Successive substitution yields:

n
-
9) a5(0,1) = [ ap W(0,1)| 2l(0,1)
=< A a, )n
l-l Cll
since Y./(0,1) = —t by (1.20C)
1M 1-) a )
1 sz
Hence (7) follows for oo <l

1

Similarly differentiating (6) twice and simplifying results
in equation (8).

Leonn 2

For R(s) >0 and i > 1,

aé(s,z)

1) 1 %s0)

AM(,0) = ake,2) - el 6,00 021,

Proof.

From (2.3) we have:




(11)

Again,

and

(12)
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4,(5,2) = ¥, [B,b,(s11e))

= ai(s,z)

q[s,8)(8,2)] = Y} {8,h, [srr-2a) (8,2)])

= a;(s,z)

oqén)[-s,al(s,z):l = \;l oqiﬁ'l)(s) qv[s,al(-s,zn

-z T U(g) o¥s0)
v=l

- 2 se,6,2)1 - 2" Vs 0)

E oq§3)(5) q,(s,2)

1

(n+l)(s,2)

vgl oq§3)(s) 8 (s,2)

o@in) (S,al(s,z)] - °q§n)(8,0)

Setting z = O in (13) leads to:

(14)

2,0 = a{"Vna (8,01 - a{™is,0)

Substitution of (12) and (14) in (13) yields:
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0™V (5,2) = al™Vis,a,(6,2)] - a7 (8,0, (5,00)

Successive similar substitution gives:

(n+ l)(ﬁ’z

(19) oy

i
- Yl{s,hz[sﬂ-)\an_l

B ai+l(s,z)
From (10) and (15) we have:
(n>(s z) = al(s z) -
For n = 0,
0
oqi )(s,Z) -z
= a}(s,2)
Lemma 3
Fer 8§ >0 and i >1,
16)  lin e (5,0 - m (s)

nJ®
Proof:

From lemme 2 we have:

( )(s z) = a (s z) -

M (5,201 - aPisa (5,001

Yi{s,hz[s+x-Xan(5,2)]3

(8,001}

- a;(S,O)

(s 0), n >1,

= Y(s)

(B’O)J n _>_ l)




Hence:

N
n), _
(17) nfl 0(11 \590) = &N(s ’O)

The left side of (17) is the L.S.T. of the probability
AN(x), where AN(x) is the probability that a busy period with
one customer initially lasts for at most N cycles of tasks

and has a duration at most x. It can be argued as in Neuts

(1969):
Au(x) 5AN+l(x) <1,
which implies that the transforms aN(s,O) is increasing in

N for 8 > 0. Hence by Helly-Bray theorem (Theorew 2, Appendix D),

aN(s,O) converges to the L.S.T. of a probability mass function.

That is:
lin a(8,0) = £ q(")(s,0)
N+ N ne1 © 1
= () = Y(s) by (1.35)
Lemma 4

If I oq§n)(s,0) & = v(s,0), el <1,
n=1

then:

o \
(18) 21 oq§“’(a,0)up = Yi(s,w), i>1,
n=




Proof:
Analogous to the proof of lemma 1.2,
Lemma 5
If R(s) >0 and l.! <1, then z = ¥(s,w) is a root of

the equation:
(19) z = le[s,hz(s'M-hz)} , 2! <1,

Further z = v(s,w) is the only root of this equation in the unit
circle |z{ <1 if R(s) >0 and |o! <1 or R(s) >0 and |o| <1

or R(s) >0, [wlflandl-)\al-)\az<o.

Proof':

Consider the recurrence relation:

(s) a®s) , 0>,

(n+l) Vs
(20) (s) = = qlv 0 Vo

v=1
which gives:

-] ©

G ORI RO nz &l
R EWORA Y
v=1
(by lemma 4)
(21) = o {q, [5,(s,0)] - q, (5]}
That is:
() Va0 = & o al)e) = wg ls,¥(eu)]

n=1




= w ¥, {g,h, s A-1¥(8,0)])

(by equation (2.3))
which proves the first part of the lemma.

The second part follows from Rouché's theorem (Theorem 3,
Appendix D). For a complete proof we refer to Takdcs (1962),
p. u8.

Lemma €

Yor R(s) >0, z = ¥(s) is a root of the equation:

(23) z = Yl{s,h2(8+)\->\2)} s ‘Zl fl )
Further Y(0) is the smallest pcsitive real root of the equation:
(24) 2 = v {0, hy(x-19)}

and if 1-h oy - M a, <0 then 6 <1, if 1-A ® - Ao, 20 then
6 = 1.
Proof:

Proof of the first part is similar to that of lemma 5, by
taking w = 1.

For the second part, the proof is analogous to that of
lemma 2 in Neuts (1969). For ccmpleteness we repeat that proof
here, since our functional equation is different <from that in
Neuts (1969).

Consider the graphs of:

y=xandy = vl{o,hz(x-xx)}

. e AR i AR B s e h 8o et o o R TS

a

i
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and consider the increasing sequence of points whose abscissae

are an(0,0). At the point x = an(0,0) we have:
y = Yl{O,hL[k-kan(O,O)]}= an+1(0,0)

and 1ng an(o,o) = Y¥(0) which implies that Y(0) is the smallest
posi:i;e real root of (24).

If 1-) % - A a, < 0O then from lemma 5 it follows that 6 < 1.
If 1-haq - A @, > O, then the graph of y = Yl{O,hz(h-kx)} does
not intersect the line y = x in [0,1) so that 8 = 1 is the only

root of (24).

Remark:
From lemmas 5 and € it follows that if 1-)\ Q - A a, > 0
then:
a, + o
1 2
(25) - v/(0) =
1-X al - A az
By t2ay, a,+3
2
(26)  Y'(0) = P2 E
(1-n oy - N ay,)
1L\
3 ’ 1
(21) & voe] =y - -
dw w=0 1-roy - Aoy
Lemma
If 8 20, 0 <z <1 and 1-\y -\, > O then:
[-3) [~ .1
(28) b [a (8,2) - & (3,0)] < £ [1 -a (0,0)J
n n n
n=1 n=1
Aa
< 2




Proof:

The summards an(s,z) - an(s,O) is a monotonic increasing
function of z and a decreasirr function of 8. Hence by setting
g =0and z = 1 in the summands we get the first part of the
inequality (28).

It can be shown that a;(o,z) > 0 for all z in [0,1], so
that an(O,z) is a convex function in [0,1] and its graph lies
entirely above the tangent at z = 1. This tangent bas an

intercept:

n

— T2y
l-kai
where the value of aé(o,l) is taken from (9).

Aa, n
Hence an(0,0) >1 - (T:ig_) which proves the lemma completely,
1

e, (0,1) - a:(0,1) = 1 - (

Limiting Properties of the Semi-Markov Sequence. The limiting

properties of the semi-Markov sequence defined in (1.3) is
studied through the following theorems.
Theorem 1

If lim P{;, =3 | §=i} =pB,, J >0, thenp, = O for all
Jifl-h - M <O0. If l-dy-Ma, >Jand 0 <z <1, then
1 2

()  B)= T p 2l =1-8 T Q-8 (00)]
3=0 Y ° n=1

where Bo is given by:

A -1 hid -

(30) 3 = £ [1-a(0,0)]
n=0

and Bj > 0 for all j.

I i
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Proof':

The stationarity equations for the imbedded Markov sequence

{§h} are:

(31)
By = £ B £ Jm jm d Giz)(u) e Mv-u) Lﬁﬁzﬁ%lli ngV)(v-u)

ral T v=1"0 "u

«© -}

o J
hy 5 I e e 0 B

v=l "0 “u

The first term is obtained by considering r > 1 customers
in unit 1 followed by a l-task and a 2-task. The second term
is obtained by considering an idle pericd followed by a l-task
and a 2-task. Equation (31) shows that all Bj are strictly
positive if end only if Be is strictly positive.

From (31) we also obtain:

_ [-o [ ] ) . - v
3) = o, IO ¢, = g omitoe)
- 21 B, Y1 (0,h,(\-x2)} + 8 ¥, {0,h,(A-2z)]
r=l- .
= B(vl{o,hz(x-xz)}) -3, Q- Yl{O,hz(x-)\z)}]
That is:

(32) B(v, {0,8,(A-12)}) - B(2) = 8 11 - v, {0,n,(x-22)})
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If 1-)0y-Aq, <O then from lemma €, 2 = Y(0) <1 is a root of

the equation z Yl{o,ha()\-kz)]. Setting 2z = Y(0) in

(32) we get B, = O which implies and implied by Bj = 0 for all
j. If 1-\ay-)ap > O, we replace z in (32) vy ar(o,z)

r = 0,1,...,n-1 and add the resulting equations tc get:

n
(3 B(a,(0,2)) = Blag(02)) = 8, T [ - 8,(0,2)]
Ir=

Letting n 2« and noting that an(O,z) - 1 a8 n < @ for every

z in [J,1) we have:

<«

(34) B(1) - B(z) = 8, E b - a (0,2)]
n=

which proves (29) since B(1) = 1. Finally equation (30) is

obtained by setting z = C in (34).
Theorem 2
If 0 <z <1 and -\ -ha, 2 0 then,
® ®

| i gl 3
(35) 353 oy 4(0) 27 = B jz& By 2

]

Proof:

From (5) we have:




I - 5 [2iM0,2) - a{™(0,0)]

n=

ngl[an(o,z) - an(0,0)]

(-] o0

% {1-a (0,0)] - Z[1-a (O,z)}
n n

n=1 n=1

(This rearrangement is allowed by lemma T7)

-1 -1
(B~ - 1) -5, [a-

-1

-1
85 B(z) -1 = 8,

Theorem 3

If8>0,0<z <1

@

(36) nfl oqln)(s,Z)

Proof':

For g >0 and 0 <z <

T 0¢1§n)(s,z)

n=l

(by Thecrem 2)




-]

5] since T B, =1,
o °? j:O‘j

1"

[or]
1+ T1- an(0,0)] , by Theorem 1
n=1

L. \ az _ 1-A ai
1- q - A a, 1 - o - X e,

<

(by lemma 7)
Theorem U
If 1 - Aoy -~ Ay >0 then:
) A az

(37 j 0) =
) ey J Omlj( )

1-2 Qi - A aé

@ Y 2. -1
() 365m2) m(0) 01ty ) [1 - 52 ]

j=1
. A\, 2 plo
! 2 2
( ) B, + 8, + 2(7——)o,
’Ll-xal I R ey 12}
Proof:

“quations (5) and (10) give:

(9 gm0 [a,0:2) - 8,00,0)]

Differentiation with respect to z gives:

© e '
(o) - 0,
(k0) 3-51 3 o ;(0) R 2 (0,1)

vhere term by term differentiation is valid by lerma 7.
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Similarly,
(41) 351 3(3-1) gm;(0) = nflan(o,l)
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Substitution of lemma 1 in (40) and (41) proves the theorem.




APPENDIX C

To facilitate readirg Chapter IV we state and prove the
following lemmag which are essentially in Neutes (1969).
Starting with the semi-Markov sequence
{S(Tn), Toe1 = Tpo 8 > 0} defined in (4.1) we define the

taboo probabilities 0Q§?)(‘) as:

Q§9>(x) = 5ij U(x)

M

() @60 =0 60 = pls(n, )=, 7,01 <xlelr_)et)

0Lj

and
QQ%’)(X) = P[Tn <x, g(Tn)=j,g(_Tv),éo,v=1,..,,n.1|g('ro)=i}
(n) (n)

Let o3y 5 (8) be the L.S.T. of oqia. (x) and

(2) oqin){s y2) = Jfo OQ;:;)(B) ZJ, 'z| <1,

We define the fellowing sequence of functions;

ho(s,z)

u
~N

(3)

H

™ - B e e




I A YA A

Further we denote:

d

h (0,1) = hn(O,z)] L

2 )
9_5 hn(O,z)J

n’(0,1)
n dz, 7=1

N

h(0,1)

3
d
——- h (O,z>l
3z3 B =1

Lemma 1

IT1 - \Na >0, then:

(4) ni:O h (0,1) = i
@ 2
(5) Zohr(0,1) - —A3
n=0 (L-n) (1-2%)
- 3 5 2
" X Ay 3AMN a3
(6) Z h’%0,1) = +
n=0 ®  (1-%a] [1-x3a3 (1-x?12)(1-kia3)]

where o, B and Y are defined in Chapter IV.

The proof is similar to that of lemme 1 in Appendix B.

Lemma 2

For R(s) >0 and i > 1,

(7) oq(o)(s,z) = hci’(a,z)

i

A,2)
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Agein the proof of this lemma 1s analogous to the proof
of lemma Z in Appendix B.
Lemma 3

Ifg >0, szflandl-)\oz>0, then:

®) % Ony(8,2)5,(00)] < 5 [1ony(0,0)]
Ay
“Ta

Far the proof we refer to the parallel proof of lemma 7
in Arpendix B.

Fer Nurther properties of the taboo probabilities defined
in this appendix we refer to Neuts (1969) where they are

extensively treated.




164

APPENDIX D
SOME WELL XKNOWN THEOREMS USED

IN THE TEXT

Theorem 1: ZYGMUND'S THEOREM
Let {Fn(x)} be a sequence of distribution functions all

vanishing for x <0 and let

m .
j et an(x), B R R
o

1) ()

If the functions ¢n(w) tend to & limit in an interval around
w= 0, and if the limiting function is continuous at « =0,
then there is a distribution function F(x) such that Fn(x)
tends to F(x) at every point of continuity of F(x).

[Ref: 2ygmund (1951)]
Theorem 2: HELLY-BRAY THEOREM

If g(x) is bounded and continuous when - ® < x < ® and the
sequence of distribution functions Fn(x) converges to a

distribution function ¥(x), then:

w @

(2) lim I g(x) d Fn(x) = I g{x) dr(x)

nIyo - -

(Ref: Loeve (1963)]
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Theorem 3: ROUCHE'S THEOREM
If £ ) and g(z) are regular inside and on a closed
contour C, and lg(z)| < | £(z)! on C, then £(z) end
#(z) + g(z) have the same number of zeros inside C.
(Ref: whittaker and Watson (1952)]
Theorem 4: SMITH'S KEY RENEWAL THEOREM
If M(t) is the expected number of renewals in (O,t],
Q(*) is a pcsitive integrable and decreasing function, then:
t P
(3) [ att-u) am(w) 5 2 | o(w) au
o ¥ 9
where p is the mean renewal time
(Ref: Smith (1958)]
Theorem 5: A TAUBERIAN THEOREM
If M(t) is non-decreasing and such that

(=}
a(s) = j e 5t dM(t) converges for R(s) > O, and if for some
o
non-negative number o, lim &~ m(s) = ¢, then:
6§ <0

{
g M) | g
t Yo 7 i(2+1)

(Ref: widder (1947)]
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